Tìm đạo hàm của \(g\left( \varphi \right) = \frac{{\cos \varphi + \sin \varphi }}{{1 - \cos \varphi }}\)
Ta có:
\(\begin{array}{l}
g\prime (\varphi ) = \frac{{(\cos \varphi + \sin \varphi )\prime .(1 - \cos \varphi ) - (\cos \varphi + \sin \varphi )(1 - \cos \varphi )\prime }}{{{{(1 - \cos \varphi )}^2}}}\\
= \frac{{(\cos \varphi - \sin \varphi ).(1 - \cos \varphi ) - (\cos \varphi + \sin \varphi ).\sin \varphi }}{{{{(1 - \cos \varphi )}^2}}}\\
= \frac{{\cos \varphi - {{\cos }^2}\varphi - \sin \varphi + \sin \varphi \cos \varphi - \cos \varphi \sin \varphi - {{\sin }^2}\varphi }}{{{{(1 - \cos \varphi )}^2}}}\\
= \frac{{\cos \varphi - \sin \varphi - 1}}{{{{(1 - \cos \varphi )}^2}}}
\end{array}\)
Chọn A.
-- Mod Toán 11
Copyright © 2021 HOCTAP247