Giải các phương trình sau :
a. \({\tan ^2}x + 3 = \frac{3}{{\cos x}}\)
b. \({\tan ^2}x = \frac{{1 + \cos x}}{{1 + \sin x}}\)
c. \(\tan x + \tan 2x = \frac{{\sin 3x}}{{\cos x}}\)
a. Đặt \(t = \frac{1}{{\cos x}}\left( {x \ne \frac{\pi }{2} + k\pi } \right)\)
Ta có:
\(\begin{array}{l}
2({t^2} - 1) + 3 = 3t\\
\Leftrightarrow 2{t^2} - 3t + 1 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
t = 1\\
t = \frac{1}{2}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\cos x = 1\\
\cos x = 2\left( l \right)
\end{array} \right.\\
\Leftrightarrow x = k2\pi
\end{array}\)
b. Điều kiện : \(\cos x \ne 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi \)
\(\begin{array}{l}
{\tan ^2}x = \frac{{1 + \cos x}}{{1 + \sin x}}\\
\Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = \frac{{1 + \cos x}}{{1 + \sin x}}\\
\Leftrightarrow \frac{{1 - {{\cos }^2}x}}{{1 - {{\sin }^2}x}} = \frac{{1 + \cos x}}{{1 + \sin x}}\\
\Leftrightarrow \frac{{1 - {{\cos }^2}x}}{{1 - \sin x}} = 1 + \cos x\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = - 1\\
1 - \cos x = 1 - \sin x
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = - 1\\
\tan x = 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \pi + k2\pi \\
x = \frac{\pi }{4} + k\pi
\end{array} \right.(k \in Z)
\end{array}\)
c. Điều kiện
\(\begin{array}{l}
\cos x \ne 0,\cos 2x \ne 0\\
\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
{\cos x \ne 0}\\
{cosx \ne \pm \frac{1}{{\sqrt 2 }}}
\end{array}} \right.
\end{array}\)
\(\begin{array}{l}
\tan x + \tan 2x = \frac{{\sin 3x}}{{\cos x}}\\
\Leftrightarrow \frac{{\sin 3x}}{{\cos x\cos 2x}} = \frac{{\sin 3x}}{{\cos x}}\\
\Leftrightarrow \sin 3x = \sin 3x\cos 2x\\
\Leftrightarrow \sin 3x\left( {1 - \cos 2x} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin 3x = 0\\
\cos 2x = 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\sin 3x = 0\\
\sin = 0
\end{array} \right.\\
\Leftrightarrow x = k\frac{\pi }{3},k \in Z
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247