a. Tính f′(3) và f′(−4) nếu f(x) = x3
b. Tính f′(1) và f′(9) nếu \(f(x) = \sqrt x \)
a) Với x0 ∈ R ta có:
\(\begin{array}{l}
f\prime ({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - x_0^3}}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} (x + x{x_0} + x_0^2) = 3x_0^2
\end{array}\)
Suy ra f′(3) = 27, f′(−4) = 48
b) Với x0 > 0, ta có:
\(\begin{array}{l}
f\prime ({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt x - \sqrt {{x_0}} }}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{\sqrt x + \sqrt {{x_0}} }} = \frac{1}{{2\sqrt {{x_0}} }}\\
\Rightarrow f\prime (1) = \frac{1}{2},f\prime (9) = \frac{1}{6}
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247