Cho hàm số: \(y = \sqrt {{x^3} - 2{x^2} + 1} \). Tính
A. \(y\prime = \frac{{3{x^2} - 4x}}{{\sqrt {{x^3} - 2{x^2} + 1} }}\)
B. \(y' = \frac{{3{x^2} + 4x}}{{2\sqrt {{x^3} - 2x + 1} }}\)
C. \(y' = \frac{{3{x^3} - 4x}}{{{x^3} - 2{x^2} + 1}}\)
D. \(y' = \frac{{3{x^2} - 4x}}{{2\sqrt {{x^3} - 2x + 1} }}\)
Ta có: \({\left( {\sqrt u } \right)^\prime } = \frac{{u'}}{{2\sqrt u }}\)
Suy ra \({\left( {\sqrt {{x^3} - 2{x^2} + 1} } \right)^\prime } = \frac{{3{x^2} - 4x}}{{2\sqrt {{x^3} - 2{x^2} + 1} }}\)
Chọn D.
-- Mod Toán 11
Copyright © 2021 HOCTAP247