Tìm đạo hàm của mỗi hàm số sau
a) \(y = {(x - {x^2})^{32}}\)
b) \(y = \frac{1}{{x\sqrt x }}\)
c) \(y = \frac{{1 + x}}{{\sqrt {1 - x} }}\)
d) \(y = \frac{x}{{\sqrt {{a^2} - {x^2}} }}\) (a là hằng số)
a) \(y\prime = 32{(x - x2)^{31}}(1 - 2x)\)
b)
\(\begin{array}{l}
y\prime = - \frac{{(x\sqrt x )\prime }}{{{x^3}}} = - \frac{{\sqrt x + \frac{x}{{2\sqrt x }}}}{{{x^3}}}\\
= \frac{{ - 3x}}{{2\sqrt x .{x^3}}} = \frac{{ - 3}}{{2{x^2}\sqrt x }}
\end{array}\)
c)
\(\begin{array}{l}
y\prime = \frac{{\sqrt {1 - x} - (1 + x).\frac{{ - 1}}{{2\sqrt {1 - x} }}}}{{1 - x}}\\
= \frac{{2(1 - x) + 1 + x}}{{2\sqrt {{{(1 - x)}^3}} }} = \frac{{3 - x}}{{2\sqrt {{{(1 - x)}^3}} }}
\end{array}\)
d)
\(\begin{array}{l}
y\prime = \frac{{\sqrt {{a^2} - {x^2}} - x.\frac{{ - 2x}}{{2\sqrt {{a^2} - {x^2}} }}}}{{{{(\sqrt {{a^2} - {x^2}} )}^2}}}\\
= \frac{{2\left( {{a^2} - {x^2}} \right) + 2{x^2}}}{{2{{\left( {\sqrt {{a^2} - {x^2}} } \right)}^3}}} = \frac{{{a^2}}}{{\sqrt {{{\left( {{a^2} - {x^2}} \right)}^3}} }}
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247