Tính các giới hạn sau:
a) \(\lim_{x\rightarrow -2}\frac{6-3x}{\sqrt{2x^2+1}}\)
b) \(\lim_{x\rightarrow 2}\frac{x-\sqrt{3x-2}}{x^2-4}\)
c) \(\lim_{x\rightarrow 2^+}\frac{x^2-3x+1}{x-2}\)
d) \(\lim_{x\rightarrow 1^-}(x+x^2+...+x^n-\frac{n}{1-x})\)
e) \(\lim_{x\rightarrow +\infty } \frac{2x-1}{x+3}\)
f) \(\lim_{x\rightarrow -\infty } \frac{x+\sqrt{4x^2-1}}{2-3x}\)
g) \(\lim_{x\rightarrow -\infty } (-2x^3+x^2-3x+1).\)
Câu a:
\(\lim_{x\rightarrow -2}\frac{6-3x}{\sqrt{2x^2+1}}=\frac{12}{3}=4\)
Câu b:
\(\lim_{x\rightarrow 2}\frac{x-\sqrt{3x-2}}{x^2-4}= \lim_{x\rightarrow 2}\frac{x^2-3x+2}{(x+2)(x+\sqrt{3x-2})}\)
\(=\lim_{x\rightarrow 2}\frac{x-1}{(x+2)(x+\sqrt{3x-2})}=\frac{1}{16}.\)
Câu c:
\(\lim_{x\rightarrow 2^+}\frac{x^2-3x+1}{x-2}=-\infty .\)
Câu d:
Ta có: \(x+x^2+..+x^n=x.\frac{x^n-1}{x-1}(x\neq 1)\)
Do đó: \(\lim_{x\rightarrow 1^-}(x+x^2+...+x^n-\frac{n}{1-x})= \lim_{x\rightarrow 1^-}\frac{x(1-x^n)-n}{1-x}\)
\(\lim_{x\rightarrow 1^-}\frac{-x^{n+1}+x-n}{1-x}=-\infty.\)
Câu e:
\(\lim_{x\rightarrow +\infty } \frac{2x-1}{x+3}= \lim_{x\rightarrow +\infty } \frac{2-\frac{1}{x}}{1+\frac{x}{3}}=2\)
Câu f:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to - \infty } \frac{{x + \sqrt {4{x^2} - 1} }}{{2 - 3x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{x + |x|\sqrt {4 - \frac{1}{{{x^2}}}} }}{{2 - 3x}}\\
= \mathop {\lim }\limits_{x \to - \infty } \frac{{1 - \sqrt {4 - \frac{1}{{{x^2}}}} }}{{\frac{2}{x} - 3}} = \frac{{1 - \sqrt 4 }}{{0 - 3}} = \frac{1}{3}
\end{array}\)
Câu g:
\(\lim_{x\rightarrow -\infty } (-2x^3+x^2-3x+1)\)
\(= \lim_{x\rightarrow -\infty } x^3(-2+\frac{1}{x}-\frac{3}{x^2}+\frac{1}{x^3})=+\infty.\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247