Chứng minh rằng một đa diện mà mỗi đỉnh của nó đều là đỉnh chung của số lẻ mặt thì tổng số các đỉnh của nó là một số chẵn. Cho ví dụ.
Chia một khối lập phương thành năm khối tứ diện.
Chia một khối lập phương thành sáu khối tứ diện bằng nhau.
Cắt bìa theo mẫu dưới đây (h.1.23), gấp theo đường kẻ, rồi dán các mép lại để được các hình tứ diện đều, hình lập phương và hình bát diện đều.
Cho hình lập phương (H). Gọi (H’) là hình bát diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H) và (H’).
Chứng minh rằng tâm của các mặt của hình tứ diện đều là các đỉnh của một hình tứ diện đều.
Cho hình bát diện đều ABCDEF (h.1.24).
Chứng minh rằng :
a) Các đoạn thẳng AF, BD và CE đôi một vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.
b) ABFD, AEFC và BCDE là những hình vuông.
Tính thể tích khối tứ diện đều cạnh a.
Tính thể tích khối bát diện đều cạnh a.
Cho hình hộp ABCD.A’B’C’D’. Tính thể tích của khối hộp đó và thể tích của khối tứ diện ACB’D’.
Cho hình chóp S.ABC. Trên các đoạn thẳng SA, SB, SC lần lượt lấy ba điểm A’, B’, C’ khác với S. Chứng minh rằng:
\(\frac{{{V_{S.A'B'C'D'}}}}{{{V_{S.ABC}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}}\)
Cho tam giác ABC vuông cân ở A và AB = a. Trên đường thẳng qua C và vuông góc với mặt phẳng (ABC) lấy điểm D sao cho CD = a. Mặt phẳng qua C vuông góc với SD, cắt BD tại F và cắt AD tại E. Tình thể tích khối tứ diện CDEF theo a.
Cho hai đường thẳng chéo nhau d và d’. Đoạn thằng AB có độ dài a trượt trên d, đoạn thẳng CD có độ dài B trượt trên d’. Chứng minh rằng khối tứ diện ABCD có thể tích không đổi.
Chứng minh rằng một đa diện có các mặt là những tam giác thì tổng sô các mặt của nó phải là một số chẵn. Cho ví dụ.
Các đỉnh, cạnh, mặt của một khối đa diện phải thoả mãn những tính chất nào?
Tìm một hình tạo bởi các đa giác nhưng không phải là một đa diện.
Thế nào là một khối đa diện lồi. Tìm ví dụ trong một khối đa diện lồi, một khối đa diện không lồi.
Cho hình lăng trụ và hình chóp có cùng diện tích đáy và chiều cao bằng nhau. Tính tỉ số thể tích của chúng.
Cho hình chóp tam giác O.ABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Hãy tính đường cao OH của hình chóp.
Cho hình chóp tam giác đều S.ABC có cạnh AB bằng a. Các cạnh bên SA, SB, SC tạo với đáy một góc bằng 600. Gọi D là giao điểm của SA với mặt phẳng qua BC và vuông góc với SA.
a) Tính tỉ số thể tích của hai khối chóp S.DBC và S.ABC
b) Tính thể tích khối chóp S.DBC
Cho hình chóp tam giác S.ABC có AB = 5a; BC = 6A; CA=7a. Các mặt bên SAB, SBC, SCA tạo với đáy một góc bằng 600. Tình thể tích khối chóp đó.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. SA vuông góc với đáy và AB=a, AD=b, SA=c. Lấy các điểm B', D' theo thứ tự thuộc SB, SD sao cho \(AB'\perp SB, AD'\perp SD\). Mặt phẳng (AB'D') cắt SC tại C'. Tính thể tích khối chóp S.AB'C'D'.
Cho hình lăng trụ đứng tam giác ABC.A'B'C' có tất cả các cạnh đều bằng a.
a) Tính thể tích khối tứ diện A'BB'C
b) Mặt phẳng đi qua A'B' và trọng tâm tam giác ABC cắt AC và BC lần lượt tạ E và F. Tính thể tích hình chóp C.A'B'FE.
Cho hình hộp ABCD.A'B'C'D'. Gọi E và F theo thứ tự là trung điểm của các cạnh BB' và DD'. Mặt phẳng (CEF) chia khối hộp trên làm hai khối đa diện. Tính tỉ số của hai khối đa diện đó.
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M là trung điểm A'B', N là trung điểm BC.
a) Tính thể tích khối tứ diện BC.
b) Mặt phẳng (DMN) chia khối lập phương đã cho thành hai khối đa diện. Gọi (H) là khối đa diện chứa đỉnh A, (H) là khối đa diện còn lại. Tính tỉ số \(\frac{V_{(H)}}{V_{(H')}}\)
Trong các mệnh đề sau, mệnh đề nào đúng?
(A) Số đỉnh và số mặt của một hình đa diện luôn bằng nhau;
(B) Tồn tại hình đa diện có số đỉnh và số mặt bằng nhau;
(C) Tồn tại một hình đa diện có số cạnh bằng số đỉnh;
(D) Tồn tại một hình đa diện có số cạnh và mặt bằng nhau.
Trong các mệnh đề sau, mệnh đề nào đúng?
Số các đỉnh hoặc số các mặt của bất kì hình đa diện nào cũng:
(A) lớn hơn hay bằng 4
(B) lớn hơn 4
(C) lớn hơn hay bằng 5
(D) lớn hơn 5
Trong các mệnh đề sau, mệnh đề nào đúng?
Số các cạnh của hình đa diện luôn luôn:
(A) Lớn hơn hay bằng 6
(B) Lớn hơn 6
(C) Lớn hơn 7
(D) Lớn hơn hay bằng 8
Trong các mệnh đề sau, mệnh đề nào SAI?
(A) Hình tứ diện là khối đa diện lồi
(B) Hình hộp là khối đa diện lồi
(C) Hình chóp là khối đa diện lồi
(D) Hình lăng trụ tam giác là khối đa diện lồi
Trong các mệnh đề sau, mệnh đề nào SAI?
(A) Hình khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau;
(B) Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau;
(C) Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau;
(D) Hai khối lập phương có diện tích toàn phần bằng nhau thì có thể tích bằng nhau.
Cho hình chóp S.ABC. Gọi A', B' lần lượt là trung điểm của SA, SB. Khi đó tỉ số thể tích của hai khối chóp S.A'B'C' và S.ABC là:
(A) \(\frac{1}{2}\)
(B) \(\frac{1}{3}\)
(C) \(\frac{1}{4}\)
(D) \(\frac{1}{8}\)
Cho hình chóp S.ABCD. Gọi A', B', C', D' lần lượt là trung điểm của SA, SB, SC, SD. Tỉ số thể tích của hai khối chóp S.A'B'C'D' và S.ABCD là
(A) \(\frac{1}{2}\)
(B) \(\frac{1}{4}\)
(C) \(\frac{1}{8}\)
(D) \(\frac{1}{16}\)
Thể tích khối lăng trụ tam giác đề có tất cả các cạnh bằng a là:
(A) \(\frac{\sqrt{2}}{3}a^3\);
(B) \(\frac{\sqrt{2}}{4}a^3\)
(C) \(\frac{\sqrt{3}}{2}a^3\)
(D) \(\frac{\sqrt{3}}{4}a^3\)
Cho hình hộp ABCD.A'B'C'D'. Tỉ số thể tích của khối tứ diện ACB'D' và khối hộp ABCD.A'B'C'D' bằng:
(A) \(\frac{1}{2}\)
(B) \(\frac{1}{3}\)
(C) \(\frac{1}{4}\)
(D) \(\frac{1}{6}\)
Cho hình hộp ABCD.A'B'C'D'. Gọi O là giao điểm của AC và BD. Tỉ số thể tích của khối chóp O.A'B'C'D' và khối hộp ABCD.A'B'C'D' bằng:
(A) \(\frac{1}{2}\)
(B) \(\frac{1}{3}\)
(C) \(\frac{1}{4}\)
(D) \(\frac{1}{6}\)
Cho hình hộp CD.A′B′C′D′ . Chứng minh rằng hai tứ diện ABD và ′D′B′ bằng nhau.
Cho lăng trụ ABC.A′B′C′. Gọi E, F, G lần lượt là trung điểm của AA′, BB′, CC′. Chứng minh rằng các lăng trụ ABC.EFG và EFG.A′B′C′ bằng nhau.
Chia hình chóp tứ giác đều thành tám hình chóp bằng nhau.
Chứng minh rằng mỗi hình đa diện có ít nhất 4 đỉnh.
Tính \(\sin \) của góc tạo bởi hai mặt kề nhau (tức là hai mặt có một cạnh chung) của một tứ diện đều.
Cho ba đoạn thẳng bằng nhau, đôi một vuông góc với nhau và cắt nhau tại trung điểm của chúng. Chứng minh rằng các đầu mút của ba đoạn thẳng ấy là các đỉnh của một hình bát diện đều.
Cho một khối bát diện đều. Hãy chỉ ra một mặt phẳng đối xứng, một tâm đối xứng và một trục đối xứng của nó.
Cho khối bát diện đều ABCDEF (hình vẽ). Gọi O là giao điểm của AC và BD, M và N theo thứ tự là trung điểm của AB và AE. Tính diện tích thiết diện tạo bởi khối bát diện đó và mặt phẳng (OMN).
Cho khối chóp tam giác đều S.ABC có đáy là tam giác đều cạnh bằng a, các cạnh bên tạo với đáy một góc 600. Hãy tính thể tích của khối chóp đó.
Cho khối chóp S.ABC có đáy là tam giác cân, AB = AC = 5a, BC = 6a và các mặt bên tạo với đáy một góc 600. Hãy tính thể tích của khối chóp đó.
Cho hình chóp tam giác S.ABC có đáy là tam giác vuông ở B. Cạnh SA vuông góc với đáy. Từ A kẻ các đoạn thẳng AD vuông góc với SB và AE vuông góc với SC. Biết rằng AB = a, BC = b, SA = c.
a) Hãy tính thể tích khối chóp S.ADE
b) Tính khoảng cách từ E đến mặt phẳng (SAB).
Chứng minh rằng tổng các khoảng cách từ một điểm bất kì trong một tứ diện đều đến các mặt của nó là một số không đổi.
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, BC = 2a, AA′ = a. Lấy điểm M trên cạnh AD sao cho AM = 3MD.
a) Tính thể tích khối chóp M.AB′C
b) Tính khoảng cách từ M đến mặt phẳng (AB′C).
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, BC = b, AA′ = c. Gọi M và N theo thứ tự là trung điểm của A′B′ và B′C′. Tính tỉ số giữa thể tích khối chóp D′.DMN và thể tích khối hộp chữ nhật ABCD.A′B′C′D′.
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, BC = b, AA′ = c. Gọi E và F lần lượt là những điểm thuộc cạnh BB′ và DD′ sao cho \(BE = \frac{1}{2}EB',DF = \frac{1}{2}FD'\). Mặt phẳng (AEF) chia khối hộp chữ nhật ABCD.A′B′C′D′ thành hai khối đa diện (H) và (H′). Gọi (H′) là khối đa diện chứa đỉnh A′. Hãy tính thể tích của (H) và tỉ số thể tích của (H) và (H′).
Cho hình hộp ABCD.A′B′C′D′. Gọi E và F lần lượt là trung điểm của B′C′ và C′D′. Mặt phẳng (AEF) chia hình hộp đó thành hai hình đa diện (H) và (H′), trong đó (H) là hình đa diện chứa đỉnh A′. Tính tỉ số giữa thể tích hình đa diện (H) và thể tích hình đa diện (H′).
Nêu hai tính chất đặc trưng của hình đa diện.
Tìm trong thực tế một ví dụ về một hình đa diện.
Tìm một ví dụ một hình tạo bởi các hình đa giác nhưng không phải là hình đa diện.
Thế nào là hai đa diện bằng nhau. Tìm một ví dụ về hai đa diện bằng nhau.
Thế nào là một hình đa diện lồi. Tìm một ví dụ về một hình đa diện không lồi.
Thế nào là một hình đa diện đều. Kể tên các loại hình đa diện đều.
Viết công thức tính thể tích hình lăng trụ, hình chóp.
Cho hình lăng trụ đứng ABC.A′B′C′ có đáy là tam giác vuông ở B, AB = BC = AA′. Hãy chia lăng trụ đó thành ba tứ diện bằng nhau.
Cho hình hộp ABCD.A′B′C′D′. Tính \(\frac{{{V_{ACB'D'}}}}{{{V_{ABCD.A'B'C'D'}}}}\)
Cho khối chóp S.ABC có thể tích bằng V. Gọi B′ và C′ lần lượt là trung điểm của SB và SC, A′ nằm trên SA sao cho \(\overrightarrow {SA} = 3\overrightarrow {SA'} \). Tính thể tích khối chóp S.A′B′C′ theo V.
Hình được tạo thành từ hình lập phương ABCD.A′B′C′D′ khi ta bỏ đi các điểm trong của mặt phẳng (ABCD) có phải là một hình đa diện không?
Chứng minh rằng mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất ba cạnh.
Cho hình lăng trụ ABC.A′B′C′ có đáy là tam giác vuông cân ở C. Cạnh B′B = a và tạo với đáy một góc bằng 600. Hình chiếu vuông góc hạ từ B′ lên đáy trùng với trọng tâm của tam giác ABC. Tính thể tích khối lăng trụ đó theo a.
Tính thể tích khối lăng trụ có chiều cao bằng h, đáy là ngũ giác đều nội tiếp trong một đường tròn bán kính r.
Cho hai đoạn thẳng AB và CD chéo nhau, AC là đường vuông góc chung của chúng. Biết rằng AC = h, AB = a, CD = b và góc giữa hai đường thẳng AB và CD bằng 600. Hãy tính thể tích của khối tứ diện ABCD.
Cho tứ diện đều ABCD. Gọi (H) là hình bát diện đều có các đỉnh là trung điểm các cạnh của tứ diện đều đó. Tính tỉ số \(\frac{{{V_{(H)}}}}{{{V_{ABCD}}}}\).
Cho tứ diện ABCD. Gọi \({h_A},{h_B},{h_C},{h_D}\) lần lượt là các đường cao của tứ diện xuất phát từ A, B, C, D và r là bán kính mặt cầu nội tiếp tứ diện. Chứng minh rằng: \(\frac{1}{{{h_A}}} + \frac{1}{{{h_B}}} + \frac{1}{{{h_C}}} + \frac{1}{{{h_D}}} = \frac{1}{r}\)
Hãy chọn cụm từ (hoặc từ) cho dưới đây để sau khi điền nó vào chỗ trống khẳng định sau trở thành khẳng định đúng:
"Số cạnh của một hình đa diện luôn … số mặt của hình đa diện ấy".
A. bằng
B. nhỏ hơn hoặc bằng
C. nhỏ hơn
D. lớn hơn
Hãy chọn cụm từ (hoặc từ) cho dưới đây để sau khi điền nó vào chỗ trống khẳng định sau trở thành khẳng định đúng:
"Số cạnh của một hình đa diện luôn … số đỉnh của hình đa diện ấy".
A. bằng
B. lớn hơn
C. nhỏ hơn
D. nhỏ hơn hoặc bằng
Khẳng định nào sau đây sai?
A. Hình lập phương là đa diện lồi.
B. Tứ diện là đa diện lồi.
C. Hình hộp là đa diện lồi.
D. Hình tạo bởi hai khối lăng trụ có chung nhau một mặt bên là một hình đa diện lồi.
Cho một hình đa diện. Khẳng định nào sau đây sai?
A. Mỗi đỉnh là đỉnh chung của ít nhất ba cạnh.
B. Mỗi đỉnh là đỉnh chung của ít nhất ba mặt.
C. Mỗi cạnh là cạnh chung của ít nhất ba mặt.
D. Mỗi mặt có ít nhất ba cạnh.
Có thể chia một hình lập phương thành bao nhiêu tứ diện bằng nhau?
A. Hai
B. Vô số
C. Bốn
D. Sáu
Số cạnh của hình bát diện đều là:
A. Tám
B. Mười
C. Mười hai
D. Mười sáu
Số đỉnh của hình bát diện đều là:
A. Sáu
B. Tám
C. Mười
D. Mười hai
Số đỉnh của hình mười hai mặt đều là:
A. Mười hai
B. Mười sáu
C. Hai mươi
D. Ba mươi
Số cạnh của hình mười hai mặt đều là:
A. Mười hai
B. Mười sáu
C. Hai mươi
D. Ba mươi
Số đỉnh của hình hai mươi mặt đều là:
A. Mười hai
B. Mười sáu
C. Hai mươi
D. Ba mươi
Cho (H) là khối lăng trụ đứng tam giác đều có tất cả các cạnh bằng a. Thể tích của (H) bằng:
A. \(\frac{{{a^3}}}{2}\)
B. \(\frac{{{a^3}\sqrt 3 }}{2}\)
C. \(\frac{{{a^3}\sqrt 3 }}{4}\)
D. \(\frac{{{a^3}\sqrt 3 }}{3}\)
Cho (H) là khối chóp tứ giác đều có tất cả các cạnh bằng a. Thể tích của (H) là:
A. \(\frac{{{a^3}}}{3}\)
B. \(\frac{{{a^3}\sqrt 2 }}{6}\)
C. \(\frac{{{a^3}\sqrt 3 }}{4}\)
D. \(\frac{{{a^3}\sqrt 3 }}{2}\)
Cho tứ diện ABCD. Gọi B′ và C′ lần lượt là trung điểm của AB và AC. Tỉ số thể tích của khối tứ diện AB′C′D và khối tứ diện ABCD bằng:
A. \(\frac{1}{2}\)
B. \(\frac{1}{4}\)
C. \(\frac{1}{6}\)
D. \(\frac{1}{8}\)
Cho hình lăng trụ ngũ giác ABCDE.A′B′C′D′. Gọi A′′, B′′, C′′, D′′, E′′ lần lượt là trung điểm các cạnh AA′, BB′, CC′, DD′, EE′. Tỉ số thể tích giữa khối lăng trụ ABCDE.A′′B′′C′′D′′E′′ và khối lăng trụ ABCDE.A′B′C′D′E′ bằng:
A. \(\frac{1}{2}\)
B. \(\frac{1}{4}\)
C. \(\frac{1}{8}\)
D. \(\frac{1}{{10}}\)
Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm A′ trên cạnh SA sao cho \(SA' = \frac{1}{3}SA\). Mặt phẳng qua A′ và song song với đáy của hình chóp cắt các cạnh SB, SC, SD lần lượt tại B′, C′, D′. Thể tích hình chóp S.A′B′C′D′ bằng:
A. \(\frac{V}{3}\)
B. \(\frac{V}{9}\)
C. \(\frac{V}{{27}}\)
D. \(\frac{V}{{81}}\)
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và khoảng cách từ trọng tâm tam giác ABC đến mặt bên (SAB) bằng \(\frac{a}{4}\). Thể tích của hình chóp bằng:
A. \(\frac{{\sqrt 3 }}{{24}}{a^3}\)
B. \(\frac{{\sqrt 3 }}{{16}}{a^3}\)
C. \(\frac{{\sqrt 3 }}{{12}}{a^3}\)
D. \(\frac{{\sqrt 2 }}{{12}}{a^3}\)
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, diện tích một mặt bên bằng \(\frac{{5\sqrt 3 {a^2}}}{{12}}\). Thể tích của hình chóp bằng:
A. \(\frac{{\sqrt 6 }}{{24}}{a^3}\)
B. \(\frac{{\sqrt 6 }}{{12}}{a^3}\)
C. \(\frac{{\sqrt 6 }}{4}{a^3}\)
D. \(\frac{{\sqrt 2 }}{{12}}{a^3}\)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và khoảng cách từ A đến mặt phẳng (SBC) bằng \(\frac{{a\sqrt 6 }}{3}\). Thể tích của hình chóp bằng:
A. \(\frac{{\sqrt 2 {a^3}}}{{16}}\)
B. \(\frac{{\sqrt 2 {a^3}}}{9}\)
C. \(\frac{{\sqrt 2 {a^3}}}{8}\)
D. \(\frac{{\sqrt 2 {a^3}}}{6}\)
Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt phẳng qua A và vuông góc với SC cắt SB, SC lần lượt tại M, N. Biết rằng SA = AC = 5, AB = 3, BC = 4. Thể tích khối chóp S.AMN bằng
A. \(\frac{{125}}{{68}}\)
B. \(\frac{{125}}{{34}}\)
C. \(\frac{{175}}{{34}}\)
D. \(\frac{{125}}{{17}}\)
Cho hình lăng trụ ABC.A′B′C′ có đáy là tam giác đều cạnh bằng a, hình chiếu vuông góc của A′ lên đáy (ABC) trùng với trọng tâm của tam giác ABC và cạnh bên tạo với đáy một góc 600. Thể tích của hình lăng trụ là:
A. \(\frac{{\sqrt 3 }}{{12}}{a^3}\)
B. \(\frac{{\sqrt 3 }}{8}{a^3}\)
C. \(\frac{{\sqrt 3 }}{4}{a^3}\)
D. \(\frac{{\sqrt 3 }}{2}{a^3}\)
Cho hình hộp ABCD.A′B′C′D′ có đáy là hình chữ nhật, hình chiếu của A′ lên đáy (ABCD trùng với trung điểm của cạnh AD. Biết rằng AB = a, AD = 2a và thể tích hình hộp đã cho bằng \(2{a^3}\). Khoảng cách từ B đến mặt phẳng (A′DCB′) bằng:
A. \(\frac{{\sqrt 2 }}{6}a\)
B. \(\frac{{\sqrt 2 }}{3}a\)
C. \(\frac{{\sqrt 3 }}{3}a\)
D. \(a\sqrt 2 \)
Cho hình chóp S.ABCD có đáy là hình thang vuông ở A và D, cạnh đáy AB = a, cạnh đáy CD = 2a, AD = a. Hình chiếu vuông góc của S lên đáy trùng với trung điểm của CD. Biết rằng diện tích mặt bên (SBC) bằng \(\frac{{3{a^2}}}{2}\). Thể tích của hình chóp S.ABCD bằng:
A. \({a^3}\)
B. \(\frac{{3{a^3}}}{2}\)
C. \(3{a^3}\)
D. \(3\sqrt 2 {a^3}\)
Cho hình chóp tứ giác đều S.ABCD có mặt bên tạo với đáy một góc bằng 600 và diện tích một mặt bên bằng \(\frac{{{a^2}}}{2}\). Thể tích của hình chóp bằng:
A. \(\frac{{\sqrt 3 }}{9}{a^3}\)
B. \(\frac{{\sqrt 3 }}{6}{a^3}\)
C. \(\frac{{\sqrt 3 }}{3}{a^3}\)
D. \(\frac{{\sqrt 3 }}{2}{a^3}\)
Cho hình chóp S.ABCD có đáy là hình vuông, SA vuông góc với đáy, SA = AC. Mặt phẳng qua A vuông góc với SC cắt SB, SC, SD lần lượt tại B′, C′, D′. Tỉ số giữa thể tích hình chóp S.AB′C′D′ và thể tích hình chóp S.ABCD là:
A. \(\frac{1}{6}\)
B. \(\frac{1}{4}\)
C. \(\frac{1}{3}\)
D. \(\frac{1}{2}\)
Cho khối lập phương ABCD.A′B′C′D′ cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB,AD. Mặt phẳng (MB′D′N) chia khối lập phương đã cho thành hai khối đa diện. Gọi (H) là khối đa diện chứa đỉnh A. Thể tích của khối đa diện (H) bằng:
A. \(\frac{{{a^3}}}{9}\)
B. \(\frac{{{a^3}}}{6}\)
C. \(\frac{{{a^3}}}{4}\)
D. \(\frac{{7{a^3}}}{{24}}\)
Chia một khối tứ diện đều thành bốn tứ diện bằng nhau.
Chứng minh rằng nếu khối đa diện có các mặt là tam giác thì số mặt phải là số chẵn. Hãy chỉ ra những khối đa diện như thế với số mặt bằng 4, 6, 8, 10.
Chứng minh rằng nếu khối đa diện có mỗi đỉnh là đỉnh chung của ba cạnh thì số đỉnh phải là số chẵn.
Chứng minh rằng nếu khối đa diện có mỗi đỉnh là đỉnh chung của ba cạnh thì số đỉnh phải là số chẵn.
Chứng minh rằng nếu khối đa diện có các mặt là tam giác và mỗi đỉnh là đỉnh chung của ba cạnh thì đó là khối tứ diện.
Hãy phân chia một khối hộp thành năm khối tứ diện.
Hãy phân chia một khối tứ diện thành bốn khối tứ diện bởi hai mặt phẳng.
Gọi Đ là phép đối xứng qua mặt phẳng (P) và a là một đường thắng nào đó. Giả sử Đ biến đường thẳng a thành đường thẳng a′. Trong trường hợp nào thì :
a) a trùng với a′;
b) a song song với a′;
c) a cắt a′;
d) a và a′ chéo nhau ?
Tìm các mặt phẳng đối xứng của các hình sau đây
a) Hình chóp tứ giác đều ;
b) Hình chóp cụt tam giác đều ;
c) Hình hộp chữ nhật mà không có mặt nào là hình vuông
Cho hình lập phương ABCD.A′B′C′D′. Chứng minh rằng :
a) Các hình chóp A.A′B′C′D′ và C.ABCD bằng nhau ;
b) Các hình lăng trụ ABC.A′B′C′ và AA′D′.BB′C′ bằng nhau.
Chứng minh rằng các phép tịnh tiến, đối xứng trục, đối xứng tâm là những phép dời hình.
Chứng minh rằng :
a) Hợp thành của hai phép đối xứng qua hai mặt phẳng song song (P) và (Q) là một phép tịnh tiến ;
b) Hợp thành của hai phép đối xứng qua hai mặt phẳng (P) và (Q) vuông góc với nhau là một phép đối xứng qua đường thẳng.
Chứng minh rằng phép vị tự biến mỗi đường thẳng thành một đường thẳng song song hoặc trùng với nó, biến mỗi mặt phẳng thành một mặt phẳng song song hoặc trùng với mặt phẳng đó.
Cho một khối tứ diện đều. Hãy chứng minh rằng:
a) Các trọng tâm của các mặt của nó là các đỉnh của một khối tứ diện đều.
b) Các trung điểm của các cạnh của nó là các đỉnh của một khối tám mặt đều.
Hai đỉnh của một khối tám mặt đều được gọi là hai đỉnh đối diện nếu chúng không cùng thuộc một cạnh của khối đó. Đoạn thẳng nối hai đỉnh đối diện gọi là đường chéo của khối tám mặt đều. Chứng minh rằng trong khối tám mặt đều :
a) Ba đường chéo cắt nhau tại trung điểm của mỗi đường ;
b) Ba đường chéo đôi một vuông góc với nhau ;
c) Ba đường chéo bằng nhau.
Hai đỉnh của một khối tám mặt đều được gọi là hai đỉnh đối diện nếu chúng không cùng thuộc một cạnh của khối đó. Đoạn thẳng nối hai đỉnh đối diện gọi là đường chéo của khối tám mặt đều. Chứng minh rằng trong khối tám mặt đều :
a) Ba đường chéo cắt nhau tại trung điểm của mỗi đường ;
b) Ba đường chéo đôi một vuông góc với nhau ;
c) Ba đường chéo bằng nhau.
Chứng minh rằng :
a) Tâm các mặt của một khối lập phương là các đỉnh của một khối tám mặt đều ;
b) Tâm cảc mặt của một khối tám mặt đều là các đỉnh của một khối lập phương.
Cho tam giác ABC cố định và một điểm S thay đổi. Thể tích của khối chóp S.ABC có thay đổi hay không nếu:
a) Đỉnh S di chuyển trên một mặt phẳng song song với mặt phẳng (ABC) ;
b) Đỉnh S di chuyển trên một mặt phẳng song song với chỉ một cạnh đáy ;
c) Đỉnh S di chuyển trên một đường thẳng song song với một cạnh đáy ?
Hãy chia một khối tứ diện thành hai khối tứ diện sao cho tỉ số thể tích của hai khối tứ diện này bằng một số k > 0 cho trước.
Tính thể tích của khối hộp ABCD.A′B′C′D′, biết rằng AA′B′D′ là khối tứ diện đều cạnh a.
Tính thể tích của khối lăng trụ n-giác đều có tất cả các cạnh đều bằng a.
Cho khối lăng trụ đứng ABC.A′B′C′ có đáy là tam giác ABC vuông tại A, AC = b, \(\widehat {ACB} = {60^0}\). Đường thẳng BC′ tạo với mp (AA′C′C) một góc 300
a) Tính độ dài đoạn thẳng AC.
b) Tính thể tích khối lăng trụ đã cho.
Cho khối lăng trụ tam giác ABC.A′B′C′ có đáy là tam giác đều cạnh a, điểm A′ cách đều ba điểm A, B, C, cạnh bên AA′ tạo với mặt phẳng đáy một góc 600
a) Tính thể tích của khối lăng trụ đó.
b) Chứng minh rằng mặt bên BCCB′ là một hình chữ nhật.
c) Tính tổng diện tích các mặt bên của hình lăng trụ ABC.A′B′C (tổng đó gọi là diện tích xung quanh của hình (hoặc khối) lăng trụ đã cho).
Cho điểm M nằm trong hình tứ diện đều ABCD. Chứng minh rằng tổng các khoảng cách từ M tới bốn mặt của hình tứ diện là một số không phụ thuộc vào vị trí của điểm M. Tổng đó bằng bao nhiêu nếu cạnh của tứ diện đều bằng a ?
Cho khối lăng trụ tam giác đều ABC.A'B'C'. Gọi M là trung điểm của AA′. Mặt phẳng đi qua M, B', C chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó.
Cho khối chóp tam giác S.ABC. Trên ba đường thẳng SA, SB, SC lần lượt lấy ba điểm A′, B′, C′ khác với S. Gọi V và V′ lần lượt là thể tích của các khối chóp S.ABC và S.A′B′C′. Chứng minh rằng: \(\frac{V}{{V'}} = \frac{{SA}}{{SA\prime }}.\frac{{SB}}{{SB\prime }}.\frac{{SC}}{{SC\prime }}\)
Khối chóp S.ABCD có đáy là hình bình hành, M là trung điểm của cạnh SC. Mặt phẳng (P) đi qua AM, song song với BD chia khối chóp thành hai phần. Tính tỉ số thể tích cùa hai phần đó.
Chứng minh rằng nếu có phép vị tự tỉ số kk biến tứ diện ABCD thành tứ diện A′B′C′D′ thì \(\frac{{{V_{A\prime B\prime C\prime D\prime }}}}{{{V_{ABCD}}}} = |k{|^3}\)
Cho tứ diện ABCD có thể tích bằng V. Gọi B′ và D′ lần lượt là trung điểm của AB và AD. Mặt phắng (CB′D′) chia khối tứ diện thành hai phần. Tính thể tích mỗi phần đó.
Cho khối hộp ABCD.A′B′C′D′. Chứng minh rằng sáu trung điểm của sáu cạnh AB, BC, CC′, C′D′, D′A′ nằm trên một mặt phẳng và mặt phẳng đó chia khối hộp thành hai phần có thể tích bằng nhau.
Cho khối tứ diện ABCD, E và F lần lượt là trung điểm của hai cạnh AB và CD. Hai mặt phẳng (ABF) và (CDE) chia khối tứ diện ABCD thành bốn khối tứ diện.
a) Kể tên bốn khối tứ diện đó.
b) Chứng tỏ rằng bốn khôi tứ diện đó có thể tích bằng nhau.
c) Chứng tỏ rằng nếu ABCD là khối tứ diện đều thì bốn khối tứ diện nói trên bằng nhau.
Cho khối làng trụ đứng ABC.A′B′C′ có diện tích đáy bằng S và AA′ = h. Một mặt phẳng (P) cắt các cạnh AA′, BB′, CC′ lần lượt tại A1, B1 và biết AA1 = a, BB1 = b, CC′ = c
a) Tính thể tích hai phần của khối lăng trụ được phân chia bởi mặt phẳng (P).
b) Với điều kiện nào của a, b, c thì thể tích hai phần đó bằng nhau ?
Cho khối lăng trụ đểu ABC.A′B′C′ và M là trung điểm của cạnh AB. Mặt phẳng (B′CM) chia khối lăng trụ thành hai phần. Tính tỉ số thể tích hai phần đó.
Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB = BC = a. Gọi B′ là trung điểm của SB, C′ là chân đường cao hạ từ A của tam giác SAC.
a) Tính thể tích khối chóp S.ABC.
b) Chứng minh rằng SCSC vuông góc với mp (AB′C′)
c) Tính thể tích khối chóp S.AB′C′.
Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
(A) Năm cạnh
(B) Bốn cạnh
(C) Ba cạnh
(D) Hai cạnh.
Cho khối chóp có đáy là n - giác. Trong các mệnh đề sau đây, mệnh đề nào đúng ?
(A) Số cạnh của khối chóp bằng n+1
(B) Số mặt của khối chóp bằng 2n
(C) Số đỉnh của khối chóp bằng 2n+1
(D) Số mặt của khối chóp bằng số đỉnh của nó.
Phép đối xứng qua mp (P) biến đường thẳng d thành chính nó khi và chỉ khi:
(A) d song song với (P)
(B). d nằm trên (P)
(C) d ⊥ (P)
(D). d nằm trên (P) hoặc d ⊥ (P)
Cho hai đường thẳng d và d′ cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d′?
(A) Có một
(B) Có hai
(C) Không có
(D) Có vô số
Có hai đường thẳng phân biệt d và d′ đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d′?
(A) Không có
(B) Có một
(C) Có hai
(D) Có một hoặc hai
Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
(A) Một
(B) Hai
(C) Ba
(D) Bốn
Một hình hộp đứng có đáy là hình thoi (không phải là hình vuông) có bao nhiêu mặt phẳng đối xứng?
(A) Một
(B) Hai
(C) Ba
(D) Bốn
Cho phép vị tự tâm O biến điểm A thành điểm B, biết rằng OA = 2OB. Khi đó tỉ số phép vị tự là bao nhiêu?
(A) 2
(B) –2
(C) \( \pm \frac{1}{2}\)
(D) \(\frac{1}{2}\)
Cho hai đường thẳng song song d và d′ và một điểm O không nằm trên chúng. Có bao nhiêu phép vị tự tâm O biến d thành d′?
(A) Có một
(B) Không có
(C) Có hai
(D) Có một hoặc không có.
Khối tám mặt đều thuộc loại:
(A) {3;3}
(B) {4;3}
(C) {5;3}
(D) {3;3}
Khối hai mươi mặt đều thuộc loại:
(A) {3;4}
(B) {3;5}
(C) {4;3}
(D) {4;5}
Nếu ba kích thước của một khối hộp chữ nhật tăng lên k lần thì thể tích của nó tăng lên:
(A) k lần
(B) k2 lần
(C) k3 lần
(D) 3k3 lần
Tổng diện tích các mặt của một hình lập phương bằng 96. Thể tích của khối lập phương đó là:
(A) 64
(B) 91
(C) 84
(D) 48
Ba kích thước của một khối hộp chữ nhật làm thành một cấp số nhân có công bội là 2. Thể tích hình hộp đã cho là 1728. Khi đó các kích thước của hình hộp là:
(A) 8, 16, 32
(B) 2, 4, 8
(C) \(2\sqrt 3 ,4\sqrt 3 ,38\)
(D) 6, 12, 24
Các đường chéo của các mặt của hình hộp chữ nhật bằng \(\sqrt 5 ,\sqrt {10} ,\sqrt {13} \). Thể tích của hình hộp đó là:
(A) 4
(B) 5
(C) 6
(D) 12
Một khối lăng trụ đứng tam giác có cạnh đáy bằng 37, 13, 30 và diện tích xung quanh bằng 480. Khi đó thể tích của khối lăng trụ là:
(A) 2010
(B) 1010
(C) 1080
(D) 2040
Một khối lăng trụ tam giác có các cạnh đáy bằng 13, 14, 15, cạnh bên tạo với mặt phẳng đáy một góc 300 và có chiều dài bằng 8. Khi đó thể tích của khối lăng trụ là:
(A) 340
(B) 336
(C) \(274\sqrt 3 \)
(D) \(124\sqrt 3 \)
Đáy của một hình hộp đứng là hình thoi cạnh a, góc nhọn 600. Đường chéo lớn của đáy bằng đường chéo nhỏ của hình hộp. Khi đó thể tích của hình hộp là:
(A) \({a^3}\)
(B) \({a^3}\sqrt 3 \)
(C) \(\frac{{{a^3}\sqrt 3 }}{2}\)
(D) \(\frac{{{a^3}\sqrt 3 }}{6}\)
Khi độ dài cạnh của hình lập phương tăng thêm 2cm thì thể tích của nó tăng thêm 98cm3. Cạnh của hình lâp phương đã cho là:
(A) 4cm
(B) 5cm
(C) 6cm
(D) 3cm
Cho một hình hộp với sáu mặt đều là hình thoi cạnh a, góc nhọn bằng 600. Khi đó thể tích của hình hộp là:
(A) \(\frac{{{a^3}\sqrt 3 }}{3}\)
(B) \(\frac{{{a^3}\sqrt 2 }}{2}\)
(C) \(\frac{{{a^3}\sqrt 2 }}{3}\)
(D) \(\frac{{{a^3}\sqrt 3 }}{2}\)
Cho một hình lập phương có cạnh bằng a. Khi đó thể tích của khối tám mặt đều mà các đỉnh là tâm của các mặt của hình lập phương đã cho bằng:
(A) \(\frac{{{a^3}\sqrt 3 }}{2}\)
(B) \(\frac{{{a^3}\sqrt 2 }}{9}\)
(C) \(\frac{{{a^3}}}{3}\)
(D) \(\frac{{{a^3}}}{6}\)
Cho khối tứ diện đều có cạnh bằng a. Khi đó, thể tích của khối tám mặt đều mà các đỉnh là trung điểm của các cạnh của khối tứ diện đã cho là:
(A) \(\frac{{{a^3}\sqrt 2 }}{{24}}\)
(B) \(\frac{{{a^3}\sqrt 3 }}{{12}}\)
(C) \(\frac{{{a^3}\sqrt 2 }}{6}\)
(D) \(\frac{{{a^3}\sqrt 3 }}{{24}}\)
Cho khối 12 mặt đều (H) có thể tích V và diện tích mỗi mặt của nó bằng S. Khi đó tổng các khoảng cách từ một điểm nằm trong (H) đến các mặt của nó bằng:
(A) \(\frac{{3V}}{{4S}}\)
(B) \(\frac{V}{{4S}}\)
(C) \(\frac{{3V}}{S}\)
(D) \(\frac{V}{{12S}}\)
Một khối lăng trụ tam giác có các cạnh đáy bằng 19, 20, 37, chiều cao của khối lăng trụ bằng trung bình cộng của các cạnh đáy. Khi đó thể tích của khối lăng trụ là:
(A) 2888
(B) \(1245\sqrt 2 \)
(C) 1123
(D) 4273
Đáy của một hình hộp là một hình thoi có cạnh bằng 6cm và góc nhọn bằng 450, cạnh bên của hình hộp dài 10cm và tạo với mặt phẳng đáy một góc 450. Khi đó thể tích của hình hộp là:
(A) \(124\sqrt 3 c{m^3}\)
(B) \(180c{m^3}\)
(C) \(120\sqrt 2 c{m^3}\)
(D) \(180\sqrt 2 c{m^3}\)
Với một tấm bìa hình vuông, người ta cắt bỏ ở mỗi góc tấm bìa một hình vuông cạnh 12cm rồi gấp lại thành nột hình hộp chữ nhật không có nắp. Nếu dung tích của cái hộp đó là 4800 cm3 thì cạnh tấm bìa đó có độ dài là:
(A) 42cm
(B) 36cm
(C) 44cm
(D) 38cm
Cho một hình chóp tam giác đều có cạnh đáy bằng a và cạnh bên tạo với mặt phẳng đáy một góc \(\alpha \). Thể tích của hình chóp đó là:
(A) \(\frac{{{a^3}\cot \alpha }}{{12}}\)
(B) \(\frac{{{a^3}\tan \alpha }}{{12}}\)
(C) \(\frac{{{a^2}\tan \alpha }}{{12}}\)
(D) \(\frac{{{a^3}\tan \alpha }}{4}\)
Một hình chóp tam giác đều có cạnh bên bằng b và cạnh bên tạo với mặt phẳng đáy một góc \(\alpha \). Thể tích của hình chóp là:
(A) \(\frac{3}{4}{b^3}{\cos ^2}\alpha \sin \alpha \)
(B) \(\frac{{\sqrt 3 }}{4}{b^3}{\cos ^2}\alpha \sin \alpha \)
(C) \(\frac{3}{4}{b^3}\cos \alpha {\sin ^2}\alpha \)
(D) \(\frac{{\sqrt 3 }}{4}{b^3}\cos \alpha \sin \alpha \)
Cho hình chóp tứ giác đêu H có diện tích đáy bằng 4 và diện tích của một mặt bên bằng \(\sqrt 2 \). Thể tích của H là:
(A) \(\frac{{4\sqrt 3 }}{3}\)
(B) \(4\)
(C) \(\frac{4}{3}\)
(D) \(\frac{{4\sqrt 3 }}{2}\)
Một khối chóp tam giác có cạnh đáy bằn 6, 8, 10. Một cạnh bên có độ dài bằng 4 và tạo với đáy góc 600. Thể tích của khối chóp đó là:
(A) \(16\sqrt 3 \)
(B) \(8\sqrt 3 \)
(C) \(16\frac{{\sqrt 2 }}{3}\)
(D) \(16\pi \)
Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên:
(A) n2 lần
(B) 2n2 lần
(C) n3 lần
(D) 2n3 lần
Khi chiều cao của một hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó:
(A) Không thay đổi
(B) Tăng lên n lần
(C) Tăng lên (n – 1) lần
(D) Giảm đi n lần.
Copyright © 2021 HOCTAP247