Bài tập 4 trang 25 SGK Hình học 12

Lý thuyết Bài tập
Câu hỏi:

Bài tập 4 trang 25 SGK Hình học 12

Cho hình chóp S.ABC. Trên các đoạn thẳng SA, SB, SC lần lượt lấy ba điểm A’, B’, C’ khác với S. Chứng minh rằng:

\(\frac{{{V_{S.A'B'C'D'}}}}{{{V_{S.ABC}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}}\)

 

Bài tập 4 trang 25 SGK Hình học 12

Gọi H, H' lần lượt là hình chiếu của A, A' lên mặt phẳng (SBC). Đặt \(\alpha  = \widehat {BSC};\,\beta  = \widehat {\left( {SA,mp\left( {SBC} \right)} \right)}\).

Ta có: 

\(\begin{array}{l}
\frac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \frac{{\frac{1}{3}{S_{SB'C'}}.A'H'}}{{\frac{1}{3}{S_{SBC}}.AH}}\\
 = \frac{{\frac{1}{2}SC'.SB'.\sin \alpha .SA.\sin \beta }}{{\frac{1}{2}.SB.SC.\sin \alpha .\sin \beta }}\\
 = \frac{{SA'.SB'.SC'}}{{SA.SB.SC}}.
\end{array}\)

Hình vẽ này chỉ cho một trường hợp H, H' nằm trong miền trong tam giác SBC. Các trường hợp khác được vẽ hình và chứng minh tương tự.

 

-- Mod Toán 12

Copyright © 2021 HOCTAP247