Cho khối chóp tam giác S.ABC. Trên ba đường thẳng SA, SB, SC lần lượt lấy ba điểm A′, B′, C′ khác với S. Gọi V và V′ lần lượt là thể tích của các khối chóp S.ABC và S.A′B′C′. Chứng minh rằng: \(\frac{V}{{V'}} = \frac{{SA}}{{SA\prime }}.\frac{{SB}}{{SB\prime }}.\frac{{SC}}{{SC\prime }}\)
Gọi H và H′ lần lượt là hình chiếu của A và A′ trên mp (SBC). Khi đó 3 điểm S, H, H′ thẳng hàng (vì chúng là hình chiếu của ba điểm thẳng hàng S , A, A′ trên mp (SBC) và vì A′H′ // AH nên \(\frac{{AH}}{{A\prime H\prime }} = \frac{{SA}}{{SA\prime }}\)
\(\begin{array}{l}
\frac{{{S_{SBC}}}}{{{S_{SB'C'}}}} = \frac{{\frac{1}{2}SB.SC.sin\widehat {BSC}}}{{\frac{1}{2}SB'.SC'.sin\widehat {B'SC'}}} = \frac{{SB}}{{SB'}}.\frac{{SC}}{{SC'}}\\
\Rightarrow \frac{V}{{V\prime }} = \frac{{{V_{A.SBC}}}}{{{V_{A\prime .SB\prime C\prime }}}} = \frac{{\frac{1}{3}.{S_{SBC}}.AH}}{{\frac{1}{3}.{S_{SB'C'}}.A'H'}} = \frac{{SA}}{{SA\prime }}.\frac{{SB}}{{SB\prime }}.\frac{{SC}}{{SC\prime }}
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247