Bài tập 4.29 trang 206 SBT Toán 12

Lý thuyết Bài tập
Câu hỏi:

Bài tập 4.29 trang 206 SBT Toán 12

Chứng minh rằng hai số phức liên hợp \(z\) và \(\overline z \) là hai nghiệm của một phương trình bậc hai với hệ số thực.

Áp dụng: Nếu hai số  và  có: \(u + v = S;uv = P\)  thì  và  là nghiệm của phương trình \({X^2} - SX + P = 0\)

Gọi \(z = a + bi \Rightarrow \bar z = a - bi,a,b \in R\)

Ta có:

\(\left\{ \begin{array}{l}
z + \bar z = a + bi + \left( {a - bi} \right) = 2a\\
z.\bar z = \left( {a + bi} \right)\left( {a - bi} \right) = {a^2} + {b^2}
\end{array} \right.\)

Vậy \(z\) và \(\overline z \) là hai nghiệm của phương trình: \({X^2} - 2aX + {a^2} + {b^2} = 0\)

 

-- Mod Toán 12

Copyright © 2021 HOCTAP247