Đẳng thức \(\int \limits_0^a \cos (x + {a^2})dx = \sin a\) xảy ra nếu:
(A) \(a=\pi \)
(B) \({a = \sqrt \pi }\)
(C) \({a = \sqrt {3\pi } }\)
(D) \({a = \sqrt {2\pi } }\)
Ta có:
\(\begin{array}{l}
\int \limits_0^a \cos (x + {a^2})dx = \sin (x + {a^2})|_0^a\\
= \sin (a + {a^2}) - \sin {a^2} = \sin a\\
\Leftrightarrow \sin (a + {a^2}) = \sin {a^2} + \sin a
\end{array}\)
Với \(a = \sqrt {2\pi } \)
\( \Rightarrow \sin (\sqrt {2\pi } + 2\pi ) = \sin 2\pi + \sin \sqrt {2\pi } \)
\( \Leftrightarrow \sin \sqrt {2\pi } = \sin \sqrt {2\pi } \)
Chọn (D).
-- Mod Toán 12
Copyright © 2021 HOCTAP247