Tìm nguyên hàm của mỗi hàm số sau
a) y = x3 (1 + x4)3
b) y = cosx sin2x
c) \(y = \frac{x}{{{{\cos }^2}x}}\)
a) Đặt u = 1 + x4
\(\begin{array}{l}
\Rightarrow du = 4{x^3}dx \Rightarrow {x^3}dx = \frac{{du}}{4}\\
\int {x^3}(1 + {x^4})dx = \frac{1}{4}\int {u^3}du = \frac{{{u^4}}}{{16}} + c\\
= \frac{1}{{16}}{(1 + {x^4})^4} + C
\end{array}\)
b) Ta có:
\(\int\sin 2x.cosxdx = \frac{1}{2}\int (\sin 3x + \sin x)dx\)
\( = - \frac{1}{6}\cos 3x - \frac{1}{2}\cos x + C\)
c) Ta có:
Đặt
\(\left\{ \begin{array}{l}
u = x\\
dv = \frac{{dx}}{{{{\cos }^2}x}}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
du = dx\\
v = \tan x
\end{array} \right.\)
Do đó:
\(\begin{array}{l}
\int \frac{x}{{{{\cos }^2}x}}dx = x\tan x - \int\tan xdx\\
= x\tan x + \int\frac{{d(\cos x)}}{{\cos x}}\\
= x\tan x + \ln |\cos x| + C
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247