Bài tập 6 trang 145 SGK Giải tích 12

Lý thuyết Bài tập
Câu hỏi:

Bài tập 6 trang 145 SGK Giải tích 12

Phát biểu các định lí về quy tắc logarit, công thức đổi cơ số của logarit.

Qui tắc tính lôgarit

Cho số thực \(a\) thỏa \(0< a\neq 1\), ta có các tính chất sau:

  • Với \(b>0\): \(a^{\log_ab}=b\)
  • Lôgarit của một tích:
    • Với \(x_1,x_2>0\): \(\log_a(x_1.x_2)=\log_ax_1+\log_ax_2\)
    • Mở rộng với \(x_1,x_2,..., x_n>0\): \(\log_a(x_1.x_2....x_n)=\log_ax_1+\log_ax_2+...+\log_ax_n\)
  • Lôgarit của một thương
    • Với \(x_1,x_2>0 :\ \log_a\frac{x_1}{x_2}=\log_ax_1-\log_ax_2\)
    • Với \(x> 0: \log_a\frac{1}{x}=-\log_ax\)
  • Lôgarit của một lũy thừa:
    • Với \(b>0:\) \(\log_ab^x=x\log_ab\)
    • \(\forall x\): \(\log_aa^x=x\)

Công thức đổi cơ số:

Cho số thực \(a\) thỏa \(0< a\neq 1\), ta có các tính chất sau:

  • Với \(0<c\neq 1,b>0:\) \(\log_ab=\frac{\log_c \ b}{\log_c \ a}\)

Lấy \(0 < b \ne 1\), chọn \(c=b\) ta có: \({\log _a}b = \frac{1}{{{{\log }_b}a}}\)

  • Với \(\alpha \neq 0,b>0\): \(\log_{a^\alpha }b^\beta =\frac{\beta }{\alpha }\log_ab\)
  • Với \(\alpha \neq 0, b>0:\) \(\log_{a^\alpha }b=\frac{1}{\alpha }\log_ab\)

 

 

-- Mod Toán 12

Copyright © 2021 HOCTAP247