a) Cho \(P(x) = \frac{{{4^x}}}{{{4^x} + 2}}\) và hai số a, b thỏa mãn a + b = 1
Hãy tính P(a) + P(b)
b) Hãy so sánh \(A = \sqrt[3]{{18}}\) và \(B = {\left( {\frac{1}{6}} \right)^{{{\log }_6}2 - \frac{1}{2}{{\log }_{\sqrt 6 }}5}}\)
a) Ta có:
\(\begin{array}{l}
p\left( a \right) + p\left( b \right) = \frac{{{4^a}}}{{{4^a} + 2}} + \frac{{{4^b}}}{{{4^b} + 2}}\\
= \frac{{{4^a}\left( {{4^b} + 2} \right) + {4^b}\left( {{4^a} + 2} \right)}}{{\left( {{4^a} + 2} \right)\left( {{4^b} + 2} \right)}}\\
= \frac{{{{2.4}^{a + b}} + 2\left( {{4^a} + {4^b}} \right)}}{{{4^{a + b}} + 4 + 2\left( {{4^a} + {4^b}} \right)}}\\
= \frac{{8 + 2\left( {{4^a} + {4^b}} \right)}}{{8 + 2\left( {{4^a} + {4^b}} \right)}} = 1
\end{array}\)
b) Ta có:
\(\begin{array}{l}
B = {\left( {\frac{1}{6}} \right)^{{{\log }_6}2 - \frac{1}{2}{{\log }_{\sqrt 6 }}5}} = {6^{ - {{\log }_6}2 + {{\log }_6}5}}\\
= {6^{{{\log }_6}\frac{5}{2}}} = \frac{5}{2}\\
{A^3} = 18 > {\left( {\frac{5}{2}} \right)^3} = {B^3}
\end{array}\)
Suy ra A > B.
-- Mod Toán 12
Copyright © 2021 HOCTAP247