Tính các tích phân sau bằng phương pháp tích phân từng phần:
a) \(\int_{1}^{e^4}\sqrt{x}lnx dx\)
b) \(\int_{\frac{\pi }{6}}^{\frac{\pi }{2}}\frac{xdx}{sin^2x}\)
c) \(\int_{0}^{\pi }(\pi -x)sinxdx\)
d) \(\int_{-1}^{0 }(2x+3)e^{-x}dx\)
Cách đặt khi tính tích phân từng phần của một số hàm thường gặp:
Cách giải: Đặt \(u = P(x)\,,\,dv = {e^{{\rm{ax}} + b}}dx\,\) hoặc \(dv = \sin (ax + b)dx,\,\,dv = \cos (ax + b)dx.\)
Cách giải: Đặt \(u = \ln ({\rm{ax}} + b)\,,\,dv = P(x)dx.\)
Ta có lời giải chi tiết câu a, b, c, d bài 11 như sau:
Câu a:
Đặt \(\left\{\begin{matrix} u=lnx\\ dv=\sqrt{x}dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dx}{x}\\ \\ v=\frac{2}{3}x^{\frac{3}{2}} \end{matrix}\right.\)
\(\int_{1}^{e^4}\sqrt{x}lnxdx=\frac{2}{3}x^{\frac{3}{2}}lnx\bigg |^{e^4}_1- \frac{2}{3}\int_{1}^{e^4}x^{\frac{1}{2}}dx\)
\(=\frac{2}{3}\sqrt{x^3}lnx \bigg |^{e^4}_1 -\frac{4}{9}\sqrt{x^3}\bigg |^{e^4}_1= \frac{4}{9}(5e^4+1)\).
Câu b:
Đặt \(\left\{\begin{matrix} u=x\\ \\ dv=\frac{1}{sin^2x}dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=-dx\\ v=-cot x \end{matrix}\right.\)
\(\int_{\frac{\pi }{6}}^{\frac{\pi }{2}} \frac{xdx}{sin^2x}=-xcot x \bigg|_{\frac{\pi }{6}}^{\frac{\pi }{2}}+ \int_{\frac{\pi }{6}}^{\frac{\pi }{2}} \frac{cosx}{sinx}dx\)
\(=-xcot x \bigg|_{\frac{\pi }{6}}^{\frac{\pi }{2}}+ ln\left | sinx \right | \bigg|_{\frac{\pi }{6}}^{\frac{\pi }{2}} =\frac{\pi \sqrt{3}}{6}+ln2\).
Câu c:
Đặt \(\left\{\begin{matrix} u=\pi -x\\ dv=sinxdx \end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=-dx\\ v=-cosx \end{matrix}\right.\)
\(\int_{0}^{\pi }(\pi -x)sinx dx=-(\pi -x)cosx \bigg |^{\pi }_0-\int_{0}^{\pi }cosxdx\)
\(=-(\pi-x)cos \bigg |^{\pi }_0-sinx\bigg |^{\pi }_0=\pi\).
Câu d:
Đặt \(\left\{\begin{matrix} u=2x+3\\ dv=e^{-x}dx \end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2dx\\ v=-e^{-x} \end{matrix}\right.\)
\(\int_{-1}^{0}(2x+3)e^{-x}dx=(-2x+3)e^{-x} \bigg |^0_{-1}+2\int_{-1}^{0}e^{-x}dx\)
\(= -(2x+3)e^{-x}\bigg |^0_{-1}-2e^{-x}\bigg |^0_{-1}=3e-5\).
-- Mod Toán 12
Copyright © 2021 HOCTAP247