Cho hàm số \(y = \frac{{(2 + m)x + m - 1}}{{x + 1}}\) (1)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 2.
b) Xác định các điểm có tọa độ nguyên trên đồ thị của (1) khi \(m \in Z\)
a) Với m = 2, ta có \(y = \frac{{4x + 1}}{{x + 1}}\)
Đồ thị:
b) Ta có \(y = 2 + m - \frac{3}{{x + 1}}\)
Vậy để y nguyên với x và m nguyên thì x + 1 phải là ước của 3, tức là: \(x + 1 = \pm 1\) hoặc \(x + 1 = \pm 3\)
Hay \({x_1} = 0;{x_2} = - 2;{x_3} = - 4;{x_4} = 2\)
Vậy các điểm thuộc đồ thị của (1) có tọa độ nguyên là
A(0; m -1) ; B(-2; 5 + m); C(-4; 3 + m); D(2; m + 1).
-- Mod Toán 12
Copyright © 2021 HOCTAP247