Bài tập 16 trang 148 SGK Giải tích 12

Lý thuyết Bài tập
Câu hỏi:

Bài tập 16 trang 148 SGK Giải tích 12

Trên mặt phẳng toạ độ, hãy tìm tập hợp điểm biểu diễn số phức z thoả mãn bất đẳng thức:

a) |z| < 2

b) \(|z-i|\leq1\)

c) \(|z-1-i|\leq 1\)

Phương pháp:

Đặt \(z=x+yi (x,y\in\mathbb{R})\) khi đó trên mặt phẳng toạ độ Oxy, điểm M(x;y) biểu diễn số phức z.

Dựa vào dữ kiện đề bài ta xác định tập hợp các điểm biểu diễn số phức z.

Lời giải:

Lời giải chi tiết câu a, b, c bài 16:

Câu a:

Đặt \(z=x+yi (x,y\in\mathbb{R})\)

Ta có: \(|z|<2\Leftrightarrow \sqrt{x^2+y^2}<2\Leftrightarrow x^2+y^2<4\)

Vậy tập hợp điểm biểu diễn số phức z có mô đun nhỏ hơn 2 là hình tròn có tâm tại gốc toạ độ, bán kính 2 (không kể biên).

Câu b:

Đặt \(z=x+yi (x,y\in\mathbb{R})\)

Ta có: z - i = x + (y - 1)i nên

\(\left | z-i \right |\leq 1\Leftrightarrow \sqrt{x^2+(y-1)^2}\leq 1\)

\(\Leftrightarrow x^2+(y-1)^2\leq 1\)

Vậy tập hợp điểm biểu diễn số phức z đã cho là hình tròn có tâm tại điểm I(0;1), bán kính 1 (kể cả biên).

Câu c:

Đặt \(z=x+yi (x,y\in\mathbb{R})\)

Ta có z - 1 - i = (x - 1) + (y - 1)i nên

\(\left | z-1-i \right |<1\Leftrightarrow \sqrt{(x-1)^2+(y-1)^2}<1\)

\(\Leftrightarrow (x-1)^2+(y-1)^2< 1\)

Vậy tập hợp điểm biểu diễn số phức z đã cho là hình tròn có tâm điểm I(1;1), bán kính 1 (không kể biên).

 

-- Mod Toán 12

Copyright © 2021 HOCTAP247