Hãy tìm tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc vuông và cạnh huyền bằng hằng số a (a > 0).
Xét tam giác ABC vuông tại A.
Kí hiệu cạnh góc vuông AB là \(x,\,\,0 < x < \frac{a}{2}\)
Khi đó, cạnh huyển , cạnh góc vuông kia là :
\({AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{\left( {a - x} \right)}^2} - {x^2}} }\) hay \({AC = \sqrt {{a^2} - 2ax} }\)
Diện tích tam giác ABC là
\(\begin{array}{*{20}{l}}
{S\left( x \right) = \frac{1}{2}x\sqrt {{a^2} - 2ax} }\\
\begin{array}{l}
S'\left( x \right) = \frac{1}{2}\sqrt {{a^2} - 2ax} - \frac{1}{2}\frac{{ax}}{{\sqrt {{a^2} - 2ax} }}\\
\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{a\left( {a - 3x} \right)}}{{2\sqrt {{a^2} - 2ax} }}
\end{array}\\
{S'\left( x \right) = 0 \Leftrightarrow x = \frac{a}{3}}
\end{array}\)
Bảng biến thiên
Tam giác có diện tích lớn nhất khi \(AB = \frac{a}{3},BC = \frac{{2a}}{3}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247