Lý thuyết Bài tập
Câu hỏi:

Bài tập 15 trang 17 SGK Toán 12 NC

Chứng minh rằng với mọi giá trị của m, hàm số \(y = \frac{{{x^2} - m\left( {m + 1} \right)x + {m^3} + 1}}{{x - m}}\) luôn có cực đại và cực tiểu

TXĐ: D = R \ {m}

\(\begin{array}{l}
y' = \frac{{\left[ {2x - m\left( {m + 1} \right)} \right]\left( {x - m} \right) - \left[ {{x^2} - m\left( {m + 1} \right)x + {m^3} + 1} \right]}}{{{{\left( {x - m} \right)}^2}}}\\
 = \frac{{{x^2} - 2mx + {m^2} - 1}}{{{{\left( {x - m} \right)}^2}}},x \ne m\\
y' = 0 \Leftrightarrow {x^2} - 2mx + {m^2} - 1 = 0 \Leftrightarrow {\left( {x - m} \right)^2} = 1\\
 \Leftrightarrow \left[ \begin{array}{l}
x = m - 1;f\left( {m - 1} \right) =  - {m^2} + m - 2\\
x = m + 1;f\left( {m + 1} \right) =  - {m^2} + m + 2
\end{array} \right.
\end{array}\)

Bảng biến thiên

Với mọi giá trị của m, hàm số đạt cực đại tại điểm x = m - 1 và đạt cực tiểu tại điểm x = m + 1

 

-- Mod Toán 12

Copyright © 2021 HOCTAP247