Lý thuyết Bài tập
Câu hỏi:

Bài tập 11 trang 46 SGK Giải tích 12

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số \(y=\frac{x+3}{x+1}\)

b) Chứng minh rằng với mọi giá trị của m, đường thẳng y = 2x + m luôn cắt (C) tại hai điểm phân biệt M và N.

c) Xác định m sao cho độ dài MN là nhỏ nhất.

d) Tiếp tuyến tại một điểm S bất kỳ của (C) luôn cắt hai tiệm cận của (C) tại P và Q. Chứng minh rằng S là trung điểm của PQ.

Câu a:

\(y=\frac{x+3}{x+1}\)

1) Tập xác định: R\{-1}.

2) Sự biến thiên: 

\(y'=\frac{x+1-x-3}{(x+1)^2}=\frac{-2}{(x+1)^2}<0 \ \ \forall x\neq -1\)

Vậy hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right).\)

Cực trị: Hàm số không có cực trị.

Tiệm cận:

Vì \(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x + 3}}{{x + 1}} = 1\) nên đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.

Vì \(\mathop {\lim }\limits_{x \to  - 1} y = \mathop {\lim }\limits_{x \to  - 1} \frac{{x + 3}}{{x + 1}} =  - \infty ,\)

\(\mathop {\lim }\limits_{x \to  - {1^ + }} y = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{x + 3}}{{x + 1}} =  + \infty \) 

Nên đường thẳng x = -1 là tiệm cận đứng của đồ thị hàm số,

Bảng biến thiên:

BBT bài 11 trang 46 SGK Giải tích 12

3) Đồ thị:

Đồ thị hàm số nhận điểm (-1;1) làm tâm đối xứng.

Đồ thị cắt Ox tại điểm (-3;0) cắt Oy tại điểm (0;3).

Đồ thị bài 11 trang 46 SGK Giải tích 12

Câu b: 

Số giao điểm của đường thẳng y = 2x + m và (C) là số nghiệm của phương trình sau:

\(\frac{x+3}{x+1}=2x+m (*)\)  (Điều kiện: \(x\neq -1\))

Ta có: \((*)\Rightarrow x+3=(2x+m)(x+1)\)

\(\Leftrightarrow 2x^2+(m+2)x+m=x+3\)

\(\Leftrightarrow 2x^2+(m+1)x+m-3=0 (**)\)

\(\Delta =(m+1)^2-8(m-3)\)

\(=m^2-6m+25>0 \ \ \forall m\).

Mặt khác không tồn tại m để x = -1 là nghiệm của (**), vì thế (*) luôn có hai nghiệm phân biệt.

Vậy với mọi giá trị của m thì (C) luôn cắt đường thẳng y = 2x + m tại hai điểm phân biệt M, N.

Câu c:

Hoành độ M, N là nghiệm của (**)

\( \Rightarrow \left\{ \begin{array}{l}
{x_M} = \frac{{ - m - 1 + \sqrt {{m^2} - 6m + 25} }}{4}\\
{x_N} = \frac{{ - m - 1 - \sqrt {{m^2} - 6m + 25} }}{4}
\end{array} \right.\)

\(\Rightarrow x_N-x_M=-\frac{\sqrt{m^2-6m+25}}{2}\)

và \(y_N-y_M=2x_N+m(2x_M+m)\)

\(=2(x_N-x_M)=-\sqrt{m^2-6m+25}\)

Do đó: 

\(MN=\sqrt{(x_N-x_M)+(y_N-y_M)^2}\)

\(=\sqrt{\frac{1}{4}(m^2-6m+25)+(m^2-6m+25)}\)

\(=\sqrt{\frac{5}{4}(m^2-6m+25)}\)

\(=\sqrt{\frac{5}{4}(m-3)^2+16} \geq \sqrt{\frac{5}{4}.16}\)

\(\Leftrightarrow MN \geq \sqrt{20}\)

Dấu "bằng" xảy ra khi m = 3.

Vậy độ dài của MN nhỏ nhất là \(\sqrt{20}\) đạt được khi m = 3.

Câu d:

Vì \(S\in (C)\) nên \(S\left ( x_0;\frac{x_0+3}{x_0+1} \right )\), do đó tiếp tuyến tai S của (C) có phương trình:

\(y=-\frac{2}{(x_0+1)^2}(x-x_0)+\frac{x_0+3}{x_0+1}\)

Tiệm cận đứng là x = - 1 ⇒ toạ độ của P là nghiệm của hệ phương trình:

\(\left\{\begin{matrix} y=-\frac{2}{(x_0+1)^2}(x-x_0)+\frac{x_0+3}{x_0+1}\\ \\ x=-1 \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=-1\\ \\ y=\frac{x_0+5}{x_0+1} \end{matrix}\right.\Leftrightarrow P \left ( -1; \frac{x_0+5}{x_0+1} \right )\)

Tiệm cận ngang là đường thẳng y = 1 ⇒ Toạ độ của Q là nghiệm của hệ phương trình:

\(\left\{\begin{matrix} y=-\frac{2}{(x_0+1)^2}(x-x_0)+\frac{x_0+3}{x_0+1}\\ \\ y=1 \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=2x_0+1\\ \\ y= 1 \end{matrix}\right.\Leftrightarrow Q(2x_0+1; 1)\)

Ta có toạ độ trung điểm của PQ là:

\(\left\{\begin{matrix} x=\frac{x_P+x_Q}{2}\\ \\ y=\frac{y_P+y_Q}{2} \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-1+2x_0+1}{2}\\ \\ y=\frac{x_0+1}{2} \ \ \ \ \ \ \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x_0 \ \ \ \ \\ \\ y=\frac{x_0+3}{x_0+1} \end{matrix}\right.\)

Vậy S là trung điểm của PQ.

 

-- Mod Toán 12

Copyright © 2021 HOCTAP247