Lý thuyết Bài tập
Câu hỏi:

Bài tập 18 trang 22 SGK Toán 12 NC

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) y = 2sin2x + 2sinx - 1

b) y = cos22x - sinx.cosx + 4

a) Đặt t = sinx, \( - 1 \le t \le 1\)

y = f(t) = 2t2 + 2t -1

Ta tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(t) trên đoạn [−1;1]. Đó cũng là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên R

\(f\prime (t) = 4t + 2;f\prime (t) = 0 \Leftrightarrow t =  - \frac{1}{2}\)

Ta có: \(f( - 1) =  - 1;f\left( { - \frac{1}{2}} \right) =  - \frac{3}{2};f(1) = 3\)

\(\mathop {minf(t)}\limits_{t \in [ - 1;1]}  =  - 32;\mathop {\max f(t)}\limits_{t \in [ - 1;1]}  = 3\)

Vậy \(\mathop {\min }\limits_{x \in R}  = \frac{{ - 3}}{2};\mathop {\max }\limits_{x \in R}  = 3\)

b) Ta có:

\(\begin{array}{l}
y = 1 - {\sin ^2}2x - \frac{1}{2}\sin 2x + 4\\
 =  - {\sin ^2}2x - \frac{1}{2}\sin 2x + 5
\end{array}\)

Đặt t = sin2x, \( - 1 \le t \le 1\)

\(y = f(t) =  - {t^2} - \frac{1}{2}t + 5;f\prime (t) =  - 2t - \frac{1}{2};f\prime (t) = 0 \Leftrightarrow t =  - \frac{1}{4} \in [ - 1;1]\)

Ta có: \(f( - 1) = \frac{9}{2};f( - 14) = \frac{{81}}{{16}};f(1) = \frac{7}{2}\)

\(\mathop {\min f(t)}\limits_{t \in [ - 1;1]}  = \frac{7}{2};\mathop {\max f(t)}\limits_{t \in [ - 1;1]}  = \frac{{81}}{{16}}\)

Vậy \(\mathop {min}\limits_{x \in R} y = \frac{7}{2};\mathop {max}\limits_{x \in R} y = \frac{{81}}{{16}}\)

 

-- Mod Toán 12

Copyright © 2021 HOCTAP247