Tìm khẳng định sai trong các khẳng định sau đây:
A. Hàm số \(y = 4\cos x - 5{\sin ^2}x - 3\) là hàm số chẵn.
B. Đồ thị hàm số \(y = \frac{{3{x^2} - 2x + 5}}{{{x^2} + x - 7}}\) có hai tiệm cận đứng.
C. Hàm số \(y = \frac{{2x - 3}}{{3x + 4}}\) luôn luôn nghịch biến.
D. Hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}
{ - 2x,\,\,\,x \ge 0}\\
{\sin \frac{x}{3},\,\,x < 0}
\end{array}} \right.\) không có đạo hàm tại x = 0.
Đáp án A: Xét \(f\left( x \right) = 4\cos x - 5{\sin ^2}x - 3\)
TXĐ: D = R là tập đối xứng.
Ta có:
\(f\left( { - x} \right) = 4\cos \left( { - x} \right) - 5{\sin ^2}\left( { - x} \right) - 3\)
\(= 4\cos x - 5{\sin ^2}x - 3 = f\left( x \right)\)
Do đó hàm số đã cho là hàm số chẵn.
A đúng.
Đáp án B: Đồ thị hàm số \(y = \frac{{3{x^2} - 2x + 5}}{{{x^2} + x - 7}}\) có hai đường TCĐ là \(x = \frac{{ - 1 + \sqrt {29} }}{2}\) và \(x = \frac{{ - 1 - \sqrt {29} }}{2}\)
B đúng.
Đáp án C: Hàm số
\(y = \frac{{2x - 3}}{{3x + 4}}\) có \(y' = \frac{{17}}{{{{\left( {3x + 4} \right)}^2}}} > 0,\forall x \ne - \frac{4}{3}\)
nên luôn đồng biến trên các khoảng \(\left( { - \infty ; - \frac{4}{3}} \right)\) và \(\left( { - \frac{4}{3}; + \infty } \right)\).
C sai.
Đáp án D: Dễ thấy hàm số liên tục tại x = 0 nên ta kiểm tra \(\mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) có tồn tại hay không.
Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{ - 2x - 0}}{{x - 0}} = - 2\)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{f\left( x \right)}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sin \frac{x}{3} - 0}}{{x - 0}}\\
= \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sin \frac{x}{3}}}{x}
\end{array}\\
{ = \mathop {\lim }\limits_{x \to {0^ - }} \left( {\frac{{\sin \frac{x}{3}}}{{\frac{x}{3}}}.\frac{1}{3}} \right) = \frac{1}{3}}
\end{array}\)
Do đó \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} \ne \mathop {\lim }\limits_{x \to {0^ - }} \frac{{f(x) - f(0)}}{{x - 0}}\) nên không tồn tại đạo hàm của hàm số tại x = 0.
D đúng.
Chọn C.
-- Mod Toán 12
Copyright © 2021 HOCTAP247