Lý thuyết Bài tập
Câu hỏi:

Bài tập 62 trang 57 SGK Toán 12 NC

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số: \(y = \frac{{x - 1}}{{x + 1}}\)

b) Chứng minh rằng giao điểm I của hai đường tiệm cận của đường cong đã cho là tâm đối xứng của nó

a) TXĐ: D = R \ {-1}

Sự biến thiên:

\(y\prime  = \frac{2}{{{{\left( {x + 1} \right)}^2}}} > 0\forall x \in D\)

Hàm số đồng biến trên khoảng (−∞;−1) và (−1;+∞)

Giới hạn:

\(\mathop {\lim}\limits_{x \to {{\left( { - 1} \right)}^ - }} y =  + \infty ;\mathop {\lim}\limits_{x \to {{\left( { - 1} \right)}^ + }} y =  - \infty \)

Tiệm cận đứng x = -1

\(\mathop {limy}\limits_{x \to  \pm \infty }  = 1\)

Tiệm cận ngang: y=1

Bảng biến thiên:

Đồ thị giao Ox tại điểm (1;0)

Đồ thị giao Oy tại điểm (0;−1)

b) Giao điểm của hai tiệm cận của đường cong là I(−1;1)

Công thức đổi trục tịnh tiến theo vecto OI là: 

\(\left\{ \begin{array}{l}
x = X - 1\\
y = Y + 1
\end{array} \right.\)

Phương trình đường cong trong hệ tọa độ IXY là:

\(\begin{array}{l}
Y + 1 = \frac{{X - 1 - 1}}{{X - 1 + 1}}\\
 \Leftrightarrow Y + 1 = \frac{{X - 2}}{X} \Leftrightarrow Y = \frac{{ - 2}}{X}
\end{array}\)

Đây là hàm số lẻ nên đồ thị nhận gốc I làm tâm đối xứng

 

-- Mod Toán 12

Copyright © 2021 HOCTAP247