Tìm các tiệm cận của đồ thị hàm số:
a) \(y=\frac{x}{2-x}\).
b) \(y=\frac{-x+7}{x+1}\).
c) \(y=\frac{2x-5}{5x-2}\).
d) \(y=\frac{7}{x}-1\).
- Để giải câu a, b, c, d của bài 1, các em cùng ôn lại lý thuyết về sự tồn tại tiệm cận đứng và tiệm cận ngang của đồ thị hàm số:
+ Đường thẳng \(y=b\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f(x)\) nếu thỏa mãn một trong các điều kiện sau:
\(\lim_{x\rightarrow -\infty } f(x) = b\)
\(\lim_{x\rightarrow +\infty } f(x) = b\)
+ Đường thẳng \(x=a\) được gọi là đường tiệm cận đứng của đồ thị hàm số \(y = f(x)\) nếu thỏa mãn một trong các điều kiện sau:
\(\lim_{x\rightarrow a^+} f(x) = \pm \infty\)
\(\lim_{x\rightarrow a^-} f(x) = \pm \infty\)
- Với hàm số phân thức bậc nhất trên bậc nhất \(y = \frac{{ax + b}}{{cx + d}}\left( {c \ne 0;ad - bc \ne 0} \right)\) ta có thể suy ra ngay tiệm cận ngang là đường thẳng \(y = \frac{a}{c}\), tiệm cận đứng là đường thẳng \(x = - \frac{d}{c}\).
Lời giải chi tiết các câu a, b, c, d bài 1 như sau:
Câu a:
Ta có:
\(\mathop {\lim }\limits_{x \to {2^ - }} \frac{x}{{2 - x}} = + \infty \); \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{x}{{2 - x}} = - \infty \)
nên đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
Ta có:
\(\mathop {\lim }\limits_{x \to + \infty } \frac{x}{{2 - x}} = - 1;\mathop {\lim }\limits_{x \to - \infty } \frac{x}{{2 - x}} = - 1\)
nên đường thẳng y = -1 là tiệm cận ngang của đồ thị hàm số.
Câu b:
Ta có:
\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{ - x + 7}}{{x + 1}} = + \infty ;\)\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{ - x + 7}}{{x + 1}} = - \infty\)
nên x = -1 là tiệm cận đứng của đồ thị hàm số.
Ta có:
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - x + 7}}{{x + 1}} = - 1;\)\(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - x + 7}}{{x + 1}} = - 1\)
nên đường thẳng y = -1 là tiệm cận ngang của đồ thị hàm số.
Câu c:
Ta có:
\(\mathop {\lim }\limits_{x \to {{\left( {\frac{2}{5}} \right)}^ + }} \frac{{2x - 5}}{{5x - 2}} = - \infty ;\)\(\mathop {\lim }\limits_{x \to {{\left( {\frac{2}{5}} \right)}^ - }} \frac{{2x - 5}}{{5x - 2}} = + \infty\)
nên đường thẳng \(x=\frac{2}{5}\) là tiệm cận đứng của đồ thị hàm số.
Ta có:
\(\mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 5}}{{5x - 2}} = \frac{2}{5};\)\(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 5}}{{5x - 2}} = \frac{2}{5}\)
nên đồ thị hàm số nhận đường thẳng \(y=\frac{2}{5}\) làm tiệm cận ngang.
Câu d:
Ta có:
\(\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{7}{x} - 1} \right) = - 1;\)\(\mathop {\lim }\limits_{x \to + \infty } \left( {\frac{7}{x} - 1} \right) = - 1\)
nên đường thẳng y = -1 là tiệm cận ngang của đồ thị hàm số.
Ta có:
\(\mathop {\lim }\limits_{x \to {0^ + }} \left( {\frac{7}{x} - 1} \right) = + \infty ;\,\mathop {\lim }\limits_{x \to {0^ - }} \left( {\frac{7}{x} - 1} \right) = - \infty\)
nên đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số.
-- Mod Toán 12
Copyright © 2021 HOCTAP247