Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
a) \(y = x^3 - 3x^2 - 9x + 35\) trên các đoạn \([-4; 4]\) và \([0;5]\).
b) \(y = x^4 - 3x^2 + 2\) trên các đoạn \([0;3]\) và \([2;5]\).
c) \(y =\frac{ (2-x)}{(1-x)}\) trên các đoạn \([2;4]\) và \([-3;-2]\).
d) \(y =\sqrt{(5-4x)}\) trên đoạn \([-1;1]\).
Quy tắc tìm GTLN và GTNN của hàm số \(f(x)\) liên tục trên một đoạn \([a;b].\)
\(\begin{array}{l}
\mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right) = \max \left\{ {f\left( a \right);f\left( b \right);f\left( {{x_i}} \right)} \right\};\\
\mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right) = \min \left\{ {f\left( a \right);f\left( b \right);f\left( {{x_i}} \right)} \right\}
\end{array}\)
Áp dụng ta giải câu a, b, c, d bài 1 như sau:
Câu a:
Xét hàm số \(y = x^3 - 3x^2 - 9x + 35\)
Tập xác định \(D=\mathbb{R}\).
Hàm số liên tục trên các đoạn [-4;4] và [0;5] nên có GTLN và GTNN trên mỗi đoạn này.
Ta có: y’ = 3x2 – 6x – 9 = 3(x2 – 2x – 3)
Trên đoạn [-4;4]:
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 3 \in \left[ { - 4;4} \right]\\ x = - 1 \in \left[ { - 4;4} \right] \end{array} \right.\)
Ta có: y(-4)=-41; y(4)=15; y(-1)=40; y(3)=8.
Vậy:
Giá trị lớn nhất của hàm số là \(\mathop {\max y}\limits_{x \in \left[ { - 4;4} \right]} = y( - 1) = 40\).
Giá trị nhỏ nhất của hàm số là \(\mathop {\min y}\limits_{x \in \left[ { - 4;4} \right]} = y( - 4) = - 41.\)
Trên đoạn [0;5]:
\(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {x = 3 \in \left[ {0;5} \right]}\\ {x = - 1 \notin \left[ {0;5} \right]} \end{array}} \right.\)
Ta có: y(0)=35; y(5)=40; y(3)=8.
Vậy:
Giá trị lớn nhất của hàm số là \(\mathop {\max y}\limits_{x \in \left[ {0;5} \right]} = y(5) = 40.\)
Giá trị nhỏ nhất của hàm số là \(\mathop {\min y}\limits_{x \in \left[ {0;5} \right]} = y(3) = 8.\)
Câu b:
Xét hàm số \(y = x^4 - 3x^2 + 2\)
Tập xác định D=R
Hàm số liên tục trên các đoạn \([0;3]\) và \([2;5]\) nên có GTLN và GTNN trên các đoạn này:
Đạo hàm: y'=4x3-6x.
Trên đoạn [0;3]:
\(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {x = - \sqrt {\frac{3}{2}} \notin \left[ {0;3} \right]}\\ {x = 0 \in \left[ {0;3} \right]}\\ {x = \sqrt {\frac{3}{2}} \in \left[ {0;3} \right]} \end{array}} \right.\)
Ta có: y(0)=2; \(y\left( {\sqrt {\frac{3}{2}} } \right) = - \frac{1}{4}\); y(3)=56.
Vậy:
Giá trị lớn nhất của hàm số:\(\mathop {\max y}\limits_{x \in \left[ {0;3} \right]} = y\left( 3 \right) = 56.\)
Giá trị nhỏ nhất của hàm số: \(\mathop {\min y}\limits_{x \in \left[ {0;3} \right]} = y\left( {\sqrt {\frac{3}{2}} } \right) = - \frac{1}{4}.\)
Trên đoạn [2;5]:
\(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {x = - \sqrt {\frac{3}{2}} \notin \left[ {2;5} \right]}\\ {x = 0 \notin \left[ {2;5} \right]}\\ {x = \sqrt {\frac{3}{2}} \notin \left[ {0;3} \right]} \end{array}} \right.\)
Ta có: y(2)=6; y(5)=552
Vậy:
Giá trị lớn nhất của hàm số \(\mathop {\max y}\limits_{x \in \left[ {2;5} \right]} = y\left( 6 \right) = 552.\)
Giá trị nhỏ nhất của hàm số: \(\mathop {\min y}\limits_{x \in \left[ {2;5} \right]} = y\left( 2 \right) = 6.\)
Câu c:
Xét hàm số \(y =\frac{ (2-x)}{(1-x)}\)
Hàm số có tập xác định D = R \{1} và liên tục trên các đoạn [2;4] và [-3;-2] thuộc D, do đó hàm số có GTLN, GTNN trên mỗi đoạn này.
Ta có : \(y' = \frac{1}{{{{\left( {1 - x} \right)}^2}}} > 0,\forall x \ne 1\)
Trên đoạn [2;4]: \(y(2)=0;y(4)=\frac{2}{3}.\)
Vậy:
Giá trị nhỏ nhất của hàm số: \(\mathop {\min y}\limits_{x \in \left[ {2;4} \right]} = y\left( 2 \right) = 0.\)
Giá trị lớn nhất của hàm số: \(\mathop {\max y}\limits_{x \in \left[ {2;4} \right]} = y\left( 4 \right) = \frac{2}{3}.\)
Trên đoạn [-3;-2]: \(y(-3)=\frac{5}{4};y(-2)=\frac{4}{3}.\)
Vậy:
Giá trị nhỏ nhất của hàm số: \(\mathop {\min y}\limits_{x \in \left[ { - 3;-2} \right]} = y\left( { - 3} \right) = \frac{5}{4}.\)
Giá trị lớn nhất của hàm số: \(\mathop {\max y}\limits_{x \in \left[ { - 3; - 2} \right]} = y\left( { - 2} \right) = \frac{4}{3}.\)
Câu d:
Xét hàm số \(y =\sqrt{(5-4x)}\)
Hàm số có tập xác định \({\rm{D = }}\left( { - \infty ;\frac{5}{4}} \right]\) nên xác định và liên tục trên đoạn [-1;1], do đó có GTLN, GTNN trên đoạn [-1;1].
Ta có:\(y' = - \frac{2}{{\sqrt {5 - 4x} }} < 0,\forall x \in \left[ { - 1;1} \right].\)
Trên đoạn [-1;1]: y(-1) = 3; y(1) = 1.
Vậy:
Giá trị lớn nhất của hàm số \(\mathop {\max }\limits_{x \in \left[ { - 1;1} \right]} y = y( - 1) = 3.\)
Giá trị nhỏ nhất của hàm số \(\mathop {\min }\limits_{x \in \left[ { - 1;1} \right]} y = y(1) = 1.\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247