Trong không gian Oxyz cho một vecto \(\vec a\) tùy ý khác vecto \(\vec 0\). Gọi \(\alpha ,\beta ,\gamma \) là ba góc tạo bởi ba vecto đơn vị \(\vec i,\vec j,\vec k\) trên ba trục Ox, Oy, Oz và vecto \(\vec a\). Chứng minh rằng: \({\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1\)
Gọi \(\overrightarrow {{a_0}} \) là vecto đơn vị cùng hướng với vecto \(\vec a\) , ta có \(\overrightarrow {{a_0}} = \frac{1}{{|\vec a|}}\vec a\)
Gọi \(\overrightarrow {O{A_0}} = \overrightarrow {{a_0}} \) và các điểm A1, A2, A3 theo thứ tự là hình chiếu vuông góc của điểm A0 trên các trục Ox, Oy, Oz.
Khi đó ta có: \(\frac{{|\overrightarrow {O{A_1}} |}}{{|\overrightarrow {O{A_0}} |}} = \cos \alpha ,\frac{{|\overrightarrow {O{A_2}} |}}{{|\overrightarrow {O{A_0}|} }} = \cos \beta ,\frac{{|\overrightarrow {O{A_3}} |}}{{|\overrightarrow {O{A_0}} |}} = \cos \gamma \)
Vì \(|\overrightarrow {O{A_0}} | = 1\) nên \(|\overrightarrow {O{A_1}} | = \cos \alpha ,|\overrightarrow {O{A_2}} | = \cos \beta ,|\overrightarrow {O{A_3}} | = \cos \gamma \)
Ta có \(\overrightarrow {O{A_0}} = \overrightarrow {O{A_1}} + \overrightarrow {O{B_2}} + \overrightarrow {O{A_3}} \) ta suy ra: \(\overrightarrow {O{A_0}} = \cos \alpha \vec i + \cos \beta \vec j + \cos \gamma \vec k\) hay \(\overrightarrow {O{A_0}} = (\cos \alpha ;\cos \beta ;\cos \gamma )\)
Vì \(\overrightarrow {O{A_0}} = \overrightarrow {{a_0}} \) mà \(\left| {\overrightarrow {{a_0}} } \right| = 1\) nên ta có: \({\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247