Lập phương trình của mặt phẳng \((\alpha )\) đi qua điểm M(3; -1; -5) đồng thời vuông góc với hai mặt phẳng:
\((\beta )\) : 3x - 2y + 2z + 7 = 0
\((\gamma )\) : 5x – 4y + 3z + 1 = 0
Mặt phẳng \((\alpha )\) vuông góc với hai mặt phẳng \((\beta )\) và \((\gamma )\), do đó hai vecto có giá song song hoặc nằm trên \((\alpha )\) là: \(\overrightarrow {{n_\beta }} = (3; - 2;2)\) và \(\overrightarrow {{n_\gamma }} = (5; - 4;3)\).
Suy ra \(\overrightarrow {{n_\alpha }} = \overrightarrow {{n_\beta }} \wedge \overrightarrow {{n_\gamma }} = (2;1; - 2)\)
Mặt khác \((\alpha )\) đi qua điểm M(3; -1; -5) và có vecto pháp tuyến là \(\overrightarrow {{n_\alpha }} \). Vậy phương trình của \((\alpha )\) là: 2(x – 3) + 1(y + 1) – 2(z + 5) = 0 hay 2x + y – 2z – 15 = 0.
-- Mod Toán 12
Copyright © 2021 HOCTAP247