Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(-2; 1; -1)
a) Chứng minh A, B, C, D là bốn đỉnh của một tứ diện.
b) Tìm góc giữa hai đường thẳng AB và CD
c) Tính độ dài đường cao của hình chóp A.BCD
Ta có lời giải chi tiết câu a, b, c bài 1 như sau:
Câu a:
Ta có: \(\overrightarrow {AB} = ( - 1;1;0),\,\,\overrightarrow {AC} = ( - 1;0;1),\,\,\overrightarrow {AD} = \left( { - 3;1; - 1} \right)\)
\(\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right|;\left| {\begin{array}{*{20}{c}} 0&{ - 1}\\ 1&{ - 1} \end{array}} \right|;\left| {\begin{array}{*{20}{c}} { - 1}&1\\ { - 1}&0 \end{array}} \right|} \right) = \left( {1;1;1} \right)\)
\(\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right].\overrightarrow {AD} = 1.( - 3) + 1.1 + 1.( - 1) = - 3 \ne 0.\)
Suy ra \(\overrightarrow {AB} ;\overrightarrow {AC} ;\overrightarrow {AD}\) không đồng phẳng hay A, B, C, D là bốn đỉnh một tứ diện.
Câu b:
Ta có: \(\overrightarrow{AB}=(-1;1;0); \overrightarrow{CD}=(-2;1;-2)\)
\(cos(AB,CD) = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {CD} } \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}} = \frac{{\left| {2 + 1 + 0} \right|}}{{\sqrt 2 .\sqrt 9 }} = \frac{1}{{\sqrt 2 }}\)
Vậy góc giữa hai đường thẳng AB và CD là 450.
Câu c:
Ta có:
\(\begin{array}{l} \overrightarrow {BC} = (0; - 1;1),\,\overrightarrow {BD} = \left( { - 2;0; - 1} \right)\\ \Rightarrow \left[ {\overrightarrow {BC} ;\overrightarrow {BD} } \right] = \left( {\left| {\begin{array}{*{20}{c}} { - 1}&1\\ 0&{ - 1} \end{array}} \right|;\left| {\begin{array}{*{20}{c}} 1&0\\ { - 1}&{ - 2} \end{array}} \right|;\left| {\begin{array}{*{20}{c}} 0&{ - 1}\\ { - 2}&0 \end{array}} \right|} \right) = \left( {1; - 2; - 2} \right). \end{array}\)
Mặt phẳng (BCD) đi qua B(0;1;0) nhận \(\overrightarrow n = \left[ {\overrightarrow {BC} ;\overrightarrow {BD} } \right]\) làm VTPT nên có phương trình là:
\(1(x - 0) - 2(y - 1) - 2(z - 0) = 0\) hay \(x - 2y - 2z + 2 = 0.\)
Độ dài đường cao của hình chóp A.BCD là khoảng cách từ A đến mp(BCD), ta có:
\(AH=d(A,(BCD))=\frac{\left | 1+2 \right |}{\sqrt{1+4+4}}=1\).
-- Mod Toán 12
Copyright © 2021 HOCTAP247