Mặt cầu tâm I(2;1;−1) tiếp xúc với mặt phẳng tọa độ (Oyz) có phương trình là:
(A) \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 4;\)
(B) \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 1;\)
(C) \({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 4;\)
(D) \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 2.\)
Mp(Oyz) có phương trình x = 0.
Khoảng cách từ I đến mp(Oyz) là:
\(R = \frac{{\left| 2 \right|}}{{\sqrt {{1^2} + {0^2} + {0^2}} }} = 2.\)
Vậy phương trình mặt cầu cần tìm là:
\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 4\)
Chọn (A).
-- Mod Toán 12
Copyright © 2021 HOCTAP247