Lập phương trình mặt phẳng (\(\alpha\)) đi qua hai điểm A( 1; 0 ; 1), B(5 ; 2 ; 3) và vuông góc với mặt phẳng: 2x - y + z - 7 = 0.
Nếu mặt phẳng \((\beta )\) vuông góc với mặt phẳng \((\alpha )\) thì VTPT của \((\beta )\) sẽ có phương song song với mặt phẳng \((\alpha )\), hay còn gọi đó là một VTCP của mặt phẳng \((\alpha )\).
Lời giải chi tiết bài 7 như sau:
Ta có \(\overrightarrow{AB}=(4;2;2)\).
Vectơ pháp tuyến của mp \((\beta )\) có phương trình 2x - y + z - 7 = 0 là \(\vec{n}_{(\beta )}=(2;-1;1)\). Do mp\((\alpha )\) vuông góc với mp \((\beta )\) nên \(\vec{n}_{(\beta )}=(2;-1;1)\) có phương song song với mp\((\alpha )\).
Suy ra: mp\((\alpha )\) có cặp VTCP là \(\overrightarrow{AB}=(4;2;2)\) và \(\vec{n}_{(\beta )}=(2;-1;1)\).
Vậy mp\((\alpha )\) có một vectơ pháp tuyến là \(\vec{n}_{\alpha }=\left [ \overrightarrow{AB}, \vec{n}_{\beta } \right ]= (1;0;-2)\).
Vậy phương trình của mặt phẳng \((\alpha )\) là:
1(x - 1) + 0(y - 0) - 2(z - 1) = 0 ⇔ x - 2z + 1 = 0.
-- Mod Toán 12
Copyright © 2021 HOCTAP247