Bài tập 3.29 trang 114 SBT Hình học 12

Lý thuyết Bài tập
Câu hỏi:

Bài tập 3.29 trang 114 SBT Hình học 12

Viết phương trình của mặt phẳng \((\beta )\) đi qua điểm M(2; -1; 2), song song với trục Oy và vuông góc với mặt phẳng \((\alpha )\) : 2x – y + 3z + 4 = 0

Mặt phẳng \((\beta )\) song song với trục Oy và vuông góc với mặt phẳng \((\alpha )\): 

2x – y + 3z + 4 = 0 , do đó hai vecto có giá song song hoặc nằm trên \((\beta )\) là: \(\vec j = (0;1;0)\) và \(\overrightarrow {{n_\alpha }}  = (2; - 1;3)\)

Suy ra \((\beta )\) có vecto pháp tuyến là \(\overrightarrow {{n_\beta }}  = \vec j \wedge \overrightarrow {{n_\alpha }}  = (3;0; - 2)\)

Mặt phẳng \((\beta )\) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là: \(\overrightarrow {{n_\beta }}  = (3;0; - 2)\)

Vậy phương trình của \((\beta )\) là: 3(x – 2) – 2(z – 2) = 0 hay 3x – 2z – 2 = 0.

 

-- Mod Toán 12

Copyright © 2021 HOCTAP247